Logic for Linguists:

Lecture 7

Gregory Wilsenach
University of Cambridge

27th November 2019

r of Camb Logic for Linguists 27th November 2019



Last week we discussed:

o the relationship between the grammars of interest in formal linguistics
and various algorithmic models;

o the most general algorithmic model, the Turing machine; and

o the limitations of this model.

In today’s lecture we will discuss a different model of computation, the
lambda calculus. However, we will motivate our interest from another angle...

¢ for Lingui



First-Order Semantics

Example:

“There exists a student learning logic.”
There are a number of approaches for assigning to this sentence a formal
semantics. We have so far met the first-order approach. We might assign it

the formula:

Jz(student(x) A learning-logic(x))

r of Camb Logic for Linguists 27th November 2019



Problems

This approach is unsatisfying for so many reasons.

It seems ad-hoc, how does one construct the FO-sentence from the English
sentence? We would like some natural compositional approach to semantics.

In natural language we can perform high-order reasoning, i.e. we can reason
about reasoning about reasoning, FO cannot define these higher-order
functions.

FO seems too simple in other respects. We can represent:
e verbs, common nouns, and adjectives — predicates;
@ proper nouns — constants; and

e variables — pronouns.

What about: Prepositions, verb phrases, adjective phrases, adverbs, etc.

There are other problems, e.g. with conjunctions.

h Novembe



Lambda Calculus to the Rescue!

The lambda calculus gives us a neat compositional approach to semantics, one
that allows us to naturally encode higher-order functions and deal with some
of the additional complexities of language.

The lambda calculus was developed by Alonzo Church in the 1930’s as part of
his work on the theory of algorithms.

We will spend the rest of this lecture taking about the lambda calculus...

ach (University of Camb Logic for Linguists 27th November 2019



Functions

The lambda calculus is a language for defining functions abstractly and
applying (or composing) functions.

Let’s first talk about functions. We are used to functions such as:

fley=a+z+lorgly) =y+1

We can apply a function to an input and we can compose functions together.

We apply f(z) to 2 by replacing each x appearing in the definition of f(z)
with the number 2 and then applying the definitions of the functions + and x.

We have something like:

f2)=224+24+1=4+4+24+1=6+1=7

/ilsenach (University of Camb Logic for Linguists 27th November 2019



Composition

We can also apply one function to the output of another function (assuming
matching types). For example:

9(f2) =9(f2)) =f(2)+1=7+1=38

We could also do this abstractly! We could define:

g(fe) =@+ +1)+1=a? 4242

This is called function composition. Notice that function composition is just
function evaluation, except we are evaluating one function abstractly on
another.

We can use function composition to define new functions from old ones! We
can think of composition as an operation that takes in two functions and gives
us back a single function.

/ilsenach (University of Camb Logic for Linguists 27th November 2019



Composition (2)

We should notice something else. Consider the function:

flx)=2>4+z+1

It can be defined by composing two functions add and multiply such that

f(x) = add(add(multiply(z, z), x), 1)

The thought behind the lambda calculus is: What can we build up from basic
syntax and function composition?

The answer, it seems, is essentially everything.

/ilsenach (University of Camb Logic for Linguists 27th November 2019



Informal Lambda Calculus

At it’s most basic level the lambda calculus provides a language for describing
functions, where instead of writing

flx)y=2>4+z+1
we write
\v.a? 4z + 1.

The lambda calculus also allows us to apply a function to a value (or another
function) such that

Az +2+1)(2) 222 +2+124+2+1 7.

These sort of repeated applications and simplifications is how the lambda
calculus computes!

ach (University of Camb Logic for Linguists 27th November 2019



M-Terms

We start with a sequence of variables x,y, z, .. ..

The A-terms are built up as follows:

o all variables are A-terms
e M-abstraction: if x is a variable and M a A-term then A\z.M is a A-term

e application: if M and N are A-terms then (M N) is a A-term.

27th Nover




Examples and Notation

Examples:

x Az.x Az.y My.(Az.(2y))2)

Notational Conventions:

o We usually write Axy.M rather than Az.(Ay.M) and

e often omit brackets when we can to simplify things and write (Az.x)z
rather than ((A\x.x)z) and zy rather than (zy).

ach (University of Camb Logic for Linguists 27th November 2019 11 /27



This is an essentially simple concept. We say M is a-equivalent to N if we can
derive N from M by renaming the bound variables.

We write M =, N to denote that M and N are a-equivalent.
Example 1:

AL.2Y =q A2.2Y

Example 2:

Az.(Azz.2)z =4 Ay.(Azz.2)z

r of Camb Logic for Linguists 27th November 2019



[-Reductions

The A-term Az.F' is intended to encode a function of z.

This function is applied to a value by taking the description of the function
(F) and replacing each free occurrence of x with the value for which we want
to compute the function.

A J-reduction is the formalisation of this process.

The idea is that a term of the form (Az.F)z S-reduces to the term
corresponding to F' with every free occurrence of z replaced by z.

Example 1:

(Az.a?+1)5 =352 +1 -525+1 526

Example 2:

(Az.z runs)(John) —3 John runs

/ilsenach (University of Camb Logic for Linguists 27th November 2019



The opposite of a B-reduction is a [-expansion. This is just the inverse
process.

A fB-expansion of xz is (A\y.yz)z. We could have chosen any variable instead of
y, but any two -expansions of this form will be a-equivalent.

We say that two A-terms M and N are f-equivalent (and write M =g N) if
we can get from M to N via a series of S-reductions, S-expansions, and
a-equivalences.

This is the notion of computation! For example:

(Az.z® 4+ 1)5 =4 26

r of Camb Logic for Linguists 27th November 2019 14 /27



Examples/Exerci

[B-reduce the following:
o (A\z.x)z
o (Az.x)(A\y.y)
o (Az.y)(Ay.y)
o (Azy.yy)zw

Wilsenach (University of Camb ogic for Linguists 27th November 2019



out These Numbers?

Wait a second...I keep on giving examples in terms of numbers and addition,
but when I formally defined A-terms we only allowed variables, abstraction,
and application.

Can we formalise these numbers in our system?

We can! I'll sketch the idea very briefly.

ach (University of Camb Logic for Linguists 27th November 2019 16 /27



Numbers

Let’s denote the encoding of a number n € N by n. We define this encoding as
follows:

1:=\fzx
2:=Afuz.fx

3= A f(f)

n:=Auz f(...(fx)...)

——

n

It is essentially only for mathematical objects that we have such neat
encodings in the lambda calculus. The natural language cases we will discuss
in a moment are unfortunately too complex to yield so completely. We include
the numerical encodings above as an example of what is possible in principal.

/ilsenach (University of Camb Logic for Linguists 27th November 2019



Example and Exercise

Let

P = xjzo. \fr.xy f(zafx)

Exercise: Show that Pmn =g m + n.

In other words, we define numbers and addition from the ground up with just
syntax and function composition! We can also define multiplication this way,
and so we can define our earlier A-term

Ao (2% 4+ 2+ 1)

completely without reference to any special functions 4+ or x or any number 1.

r of Camb Logic for Linguists 27th November 2019



Turing Computation

I should pause here for a quick interlude.

It is possible to show that the lambda calculus can compute exactly what a
Turing machine can compute.

I won’t go into any detail about what exactly that means, but see here for
details
https://www.cl.cam.ac.uk/teaching/1718/CompTheory/lecture-10.pdf

ach (University of Camb Logic for Linguists 27th November 2019 19 /27


https://www.cl.cam.ac.uk/teaching/1718/CompTheory/lecture-10.pdf

Formal to Informal

I hope I've convinced you that we can formalise a lot in lambda calculus using
pure syntax and function composition (although formalising things outside of
mathematics can be tricky)

Let’s go back to being informal and let’s just trust that we can build up any
operation we might choose using pure syntax and function composition.

r of Camb Logic for Linguists 27th November 2019



Back to Linguistics...almost

Notice that we can partially apply a function. For example
(Azy.zy)z =g A\y.2y

This is very useful for linguistics as we shall see in a moment...

ach (University of Camb Logic for Linguists 27th November 2019



Linguistics

The idea is as follows:

o start with a syntax tree,

o each verb is denoted by a A-term denoting a function where the arity of
the function (the number of variables bound by the A operator) is equal
to the valence of the verb, and

@ each noun is denoted by some fixed A-term.

We then label the leaves of the syntax tree and S-reduce upwards in order to
label the other nodes in the tree.

r of Camb Logic for Linguists 27th November 2019



Example (1)

S Bob runs
P P
NP VP NP VP

Bob runs Bob  Az.x runs

27th Nover



Example (2)

Bob shot Steve

NP VP NP Ay.y shot Steve
| N \
Bob 'V N Bob

| A% N
Shot  Steve

\
Azry.y shot x  Steve

ach (University of Camb Logic for Linguists 27th November 2019



Exerci

Write out the syntax trees for the following sentences and put them in lambda
notation:

e “I teach logic to linguistics students.”
@ “Steve reads the Lord of the Rings to bill.”

@ “Her mother sits on the chair.”

There are readings at the end of this presentation if you need more detail.

r of Camb Logic for Linguists 27th November 2019



Summary

In this lecture we

e motivated the need for the lambda calculus;
e gave an informal introduction to the lambda calculus;
e introduced the lambda calculus formally;

o discussed how the lambda calculus arises within the theory of algorithms;
and

o discussed how it can be used to give semantics to natural language
sentences.

27th Nover



Here are some online course notes on semantics and the lambda calculus
@ http://people.umass.edu/partee/MGU_2005/MGUO52 . pdf

Here is a cute introduction to the A-calculus in linguistics entirely in pictures.
It’s really worth checking out!

@ https://imgur.com/a/XBHub

For a detailed introduction to the A-calculus see lectures 9, 10, 11, and 12
from

@ https:
//wuw.cl.cam.ac.uk/teaching/1718/CompTheory/materials.html

Here is another (slightly mathematical) introduction to the subject

@ http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

/ilsenach (University of Camb Logic for Linguists 27th November 2019


http://people.umass.edu/partee/MGU_2005/MGU052.pdf
https://imgur.com/a/XBHub
https://www.cl.cam.ac.uk/teaching/1718/CompTheory/materials.html
https://www.cl.cam.ac.uk/teaching/1718/CompTheory/materials.html
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

