
Logic for Linguists:

Lecture 5

Gregory Wilsenach

University of Cambridge

13th November 2019

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 1 / 28

Some History

In Syntactic Structures Chomsky presented a very formal approach to syntax.

The idea was to start with a set of symbols and set of formal rules for
generating new parts of a sentence from old.

The hope was to construct a system along these lines that could generate all
and only the grammatical sentences of a given natural language.

This recursive, we might now say algorithmic, approach to the subject lead
Chomsky and others to the study of progressively more powerful (and
complex) formal systems.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 2 / 28

The Chomsky Hierarchy

In particular, it lead to the following hierarchy of formal languages:

Type-0: Recursively Enumerable Languages,

Type-1: Context Sensitive Languages,

Type-2: Context-Free Languages, and

Type-3: Regular Languages.

This hierarchy is presented above in decreasing order of strength. In other
words, any class of languages on this list also contains those that appear lower
down on the list.

We will concern ourselves today with the lowest rung on this ladder, regular
languages. We will begin by discussing a formalisation of the notion of an
algorithm.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 3 / 28

Deterministic Finite State Automata

A deterministic finite state automaton (DFA) consists of set of states and
transition arrows.

Each arrow is labelled by a symbol from some finite set, which we call the
vocabulary.

We designate one state to be starting state and designate a set of states to be
the accepting or final states.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 4 / 28

Diagrams

We usually represent a DFA using a diagram.

Start state:

s1

Final state:

s2

Other state:

s3

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 5 / 28

Generic Example

Here is a generic example:

q1 q2 q3

0

1

1

0

0, 1

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 6 / 28

Example 1

Let’s model these automatic doors we see around the university.

Closed Open

swipe card

walk

swipe card

The vocabulary

Σ := {walk, swipe card}

The set of states

Q := {Closed,Open}

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 7 / 28

Example 2

The life of an academic.

Writing Reviewing

Teaching

submit

return with suggestions
give up

The vocabulary is Σ := {submit, return with suggestions, give up}

The set of states is Q := {Writing,Teaching,Reviewing}.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 8 / 28

Formal Definition

A deterministic finite-state automaton A is a tuple

A := (Σ, Q, q0, δ, F),

where:

Σ is a finite set, which we call the alphabet or vocabulary;

Q is a finite (non-empty) set, which we call the set of states;

q0 ∈ Q is the initial state;

δ : Q× Σ→ Q is the state transition function; and

F ⊆ Q is the set of final states.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 9 / 28

Language

Let Σ be a vocabulary. A string or word over Σ is simply a sequence of
elements in our alphabet.

Example: if Σ = {a, b} then aaaabbaaba is a word in Σ.

Let Σ∗ be the set of all words over Σ.

We call a subset L ⊆ Σ∗ a language over Σ.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 10 / 28

Examples

Let Σ = {a, b}.

Example 1:

L1 = {a, aa, aaa, aaa, . . .

Example 2:

L2 = {ab}

We write an to denote a repeated n times.

Example 3:

L3 = {anbn : n ∈ N}

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 11 / 28

DFA’s and Languages

Suppose we have some DFA called M over a vocabulary Σ. We can generate a
string in Σ using M as follows:

We start in the initial state and choose an arrow leaving that state;

We write down the symbol labelling that arrow and now move along that
arrow and transition to the new state;

we choose an arrow leaving our current state;

we write down the symbol labelling that arrow and transition to the new
state; and

we continue this process for as long as we want, with the caveat that we
can only stop if we are in an accepting state.

Note: There are obviously lots of choices we can make, so a machine may be
able to generate many different words.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 12 / 28

Example 1

q0 q1
b

a

Can you give me an example of a word this machine can generate?

Can you describe the set of all words that can be generated by this machine?

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 13 / 28

Example 2

q0 q1

b

a

a b

Can you give me an example of a word this machine can generate?

Can you describe the set of all words that can be generated by this machine?

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 14 / 28

Languages and DFA’s

We say that a DFA M over a vocabulary Σ accepts a string s over Σ if M can
generate s. If M does not accept s we say M rejects s.

The language decided by M is the set of all strings that it accepts.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 15 / 28

Returning to the Example

q0 q1

b

a

a b

What is the is the language decided by this machine?

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 16 / 28

Operations on Languages: Concatenation

Let’s spend some time speaking about languages and strings and some natural
operations.

The concatenation of two strings w1 and w2 is just the string formed by
writing w1 and then writing w2 right afterwards.

Example: aa concatenated with ab is aaab.

We write w1 · w2 to denote the concatenation of two strings. The
concatenation of two languages L1 and L2 is the language

L1 · L2 = {w1 · w2 : w1 ∈ L1, w2 ∈ L2}.

Example: Let L1 = {a, ab} and L2 = {ε, bb} then

L1 · L2 = {a, abb, ab, abbb}.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 17 / 28

Kleene Star Operator

The Kleene Star of a language L is defined as:

L∗ = {ε} ∪ L ∪ L · L ∪ (L · L) · L ∪

In other words: the Keene star of a language is formed by concenating the
language with itself 0, 1, 2, . . . times and then taking the union of all of these
languages.

Example: {a}∗ = {ε, a, aa, aaa, . . .}

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 18 / 28

Regular Languages (1)

We spoke earlier about Regular Languages, let’s define this notion now.

A regular language L over Σ is one built up from a set of base languages using
specified rules. The base languages are:

the empty language {};
the language {ε} containing the empty word (ε is the empty word); and

the singleton languages over Σ, for example if Σ = {a, b} then {a} and
{b} are the singleton languages.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 19 / 28

Regular Languages (2)

We then have three operations for building new regular languages from known
regular languages. They are as follows.

The union of two regular languages is a regular language (i.e. if L1 and L2

are regular languages then the language containing all of the words in
both L1 and L2 is regular).

The concatenation of two regular languages is regular.

The Keene star of a regular language is regular.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 20 / 28

Example

Let

L = {ε} ∪ {anb : n ∈ {0, 1, 2, . . .}}.

In other words L consists of all those strings of the form a . . . ab. Is this
language regular?

Yes! Here is the proof:

{a} is regular so {a}∗ = {ε, a, aa, . . .} is regular,

{b} is also regular and so {a}∗ · {b} is regular,

but L = {a}∗ · {b} and so L is regular.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 21 / 28

Bringing it All Together

It turns out that regular languages are exactly the languages recognised by
deterministic finite-state automata!

Kleene’s Theorem:

For every regular language there is a DFA over the same vocabulary that
decides that language.

The language decided by any DFA is regular.

It follows that the bottom layer of the Chomsky hierarchy consists of all those
languages decidable by DFA’s.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 22 / 28

Exercise

Let

L = {ε} ∪ {anb : n ∈ {0, 1, 2, . . .}}.

Construct a DFA that decides L.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 23 / 28

Limitations

We will not have time for this today, but we could define regular languages a
third way, as exactly those languages which can be specified by a regular
grammar.

A grammar in this context simply means a set of rules for generating strings.

A linguist might hope that the set of valid sentences in some natural language
(say English) form a regular language.

Unfortunately this is not the case...

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 24 / 28

The Pumping Lemma For Regular Languages

Theorem (Pumping Lemma)

For every regular language L there exists an integer n such that for every
x ∈ L with |x| ≥ n there exists u, v, w ∈ Σ∗ such that x = uvw and

|uv| ≤ n,
v ≥ 1, and

for all i ≥ 0 : uviw ∈ L.

In English: If we take a string x ∈ L and insert v any number of times in the
middle of it then the resultant string is still in L.

This result is what allows us to show that certain very simple languages are
not regular. Example:

L = {anbn : n ∈ {0, 1, . . .}}

is not regular.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 25 / 28

Informal Understanding

What you should really take away from the pumping lemma is that DFA’s
have no memory. We cannot implement something like this:

first generate a string of a’s of some length,

store the number of a’s generated, and

generate a string of b’s of the same length.

The DFA can’t remember the number of a’s that came earlier on.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 26 / 28

Summary

In this lecture...

We introduced the Chomsky hierarchy.

We introduced DFA’s and discussed what it means for a machine to
recognise a language.

We introduced regular languages and established the equivalence between
regular languages and DFA’s.

We discussed the limitations of regular languages.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 27 / 28

Reading

This is the most complete introduction to this area:

https://www.dpmms.cam.ac.uk/~tf/cam_only/crouchnotes.pdf

In the document linked above see

Section 3.4 for regular grammars (another characterisation of regular
languages),

Section 3.3 for a proof of Kleene’s theorem, and

Section 4.1 for the Pumping lemma and its proof.

I expect you can all find a copy of Syntactic Structures for more information
on Chomsky’s (initial) approach.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 13th November 2019 28 / 28

https://www.dpmms.cam.ac.uk/~tf/cam_only/crouchnotes.pdf

