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The Talk Today

In this lecture we will discuss generalised quantifiers. In particular, we will:

discuss some of the early history of logic and quantification,

talk about what it means for two models to be equivalent,

introduce generalised quantifiers,

discuss some natural applications in linguistics,

use these applications to motivate further developing our framework for
generalised quantifiers, and finally

we will discuss some general theory for extensions of first-order logic.
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Syllogisms

The most famous achievement of Aristotle in logic is his development of
syllogistic inference. A syllogism is an argument of a very specific sort,
consisting of two premises (major and minor) and one conclusion. The
standard example:

“All men are mortal. Socrates is a man. Therefore, Socrates is mortal.”

We have

Major Premise: “All men are mortal.”

Minor Premise: “Socrates is a man.”

Conclusion: “Socrates is mortal.”
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The Structure of Propositions

Another example:

“Everything white is sweet. Salt is white. Therefore, salt is sweet.”

Importantly, the premises and conclusion have structure. Each is formed from
two terms, where a term is a subjects or predicate (e.g. “salt”, “white”,
“sweet”).

The premises are required to have one term in common (called the middle
term) and the conclusion is required to only use the remaining terms.
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Generalised Quantifiers

Aristotle considered four different quantifiers: “all”, “no”, “some”, and “not
all”.

Let’s pause for some history. In the 1870s Gottlob Frege introduced the first
predicate calculus. One of his most important results established that each of
these quantifiers can be expressed in predicate logic. In particular:

“All A are B” can be written as ∀x(A(x)→ B(x)),

“No A is a B” can be written as ¬∃x(A(x) ∧B(x)),

“Some A are B” can be written as ∃x(A(x) ∧B(x)), and

“Some A is not B” can be written as ∃x(A(x) ∧ ¬B(x)).

In this sense predicate logic superseded syllogistic reasoning. Can we
introduce generalised quantifiers for predicate logic? Can we generalise the
ordinary universal and existential quantifiers?
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When Are Two Models the Same?

In order to talk formally about generalised quantifiers we first need to
introduce another key idea, the notion of an isomorphism.

An isomorphism is a function between two models that witnesses the fact that
these two models are essentially the same up to presentation. Before we define
this concept rigorously let’s consider a few concrete examples. Let τ be the
vocabulary consisting of

Constant Symbols: a (“Alice”), b (“Bob”), and c (“Charlie”)

Unary Relation Symbol: L (“is a Linguist”)

Binary Relation Symbol: F (“is friends with”)
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Three Examples

Let M be the τ -model with universe
{1, 2, 3} and

aM = 1, bM = 2, and cM = 3;

LM = {1, 2}; and

FM = {(1, 2)(2, 1)}.

Let N be the τ -model with universe
{2, 3, 4} and

aN = 2, bN = 3, and cN = 4;

LN = {2, 3}; and

FN = {(2, 3)(3, 2)}.

Let P be the τ -model with universe
{1, 2, 3, 4} and

aP = 2, bP = 3, and cP = 4;

LP = {2, 3}; and

FP = {(2, 3)(3, 2)}.

Which of these models are the same?
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Bijection

Let A and B be two sets. We say that f : A→ B is a bijection if

for every b ∈ B there is some a ∈ A such that f(a) = b and

for every a1, a2 ∈ A if f(a1) = f(a2) then a1 = a2.
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Isomorphism

Let τ be a vocabulary. Let M and N be τ -models with universes M and N ,
respectively. We say that M and N are isomorphic if there exists a bijection
f : M → N such that

for every constant symbol c ∈ τ we have f(cM) = cN ,

for every relation symbol R ∈ τ with arity r and every a1, . . . , ar ∈M we
have

RM(a1, . . . , ar) if, and only if, RN (f(a1), . . . , f(ar)), and

for every function symbol g ∈ τ with arity r every a1, . . . , ar ∈M we have

f(gM(a1, . . . , ar)) = gN (f(a1), . . . , f(ar)).

So, returning to the previous examples, which of them are the same?
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Example

Let M be the τ -model with universe
{1, 2, 3} and

aM = 1, bM = 2, and cM = 3;

LM = {1, 2}; and

FM = {(1, 2)(2, 1)}.

Let N be the τ -model with universe
{2, 3, 4} and

aN = 2, bN = 3, and cN = 4;

LN = {2, 3}; and

FN = {(2, 3)(2, 3)}.

Let P be the τ -model with universe
{1, 2, 3, 4} and

aP = 2, bP = 3, and cP = 4;

LP = {2, 3}; and

FP = {(2, 3)(2, 3)}.

Which of these models are the
isomorphic?
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Isomorphism → Logic Equivalence

The crucial point for us as logicians is that if two structures are isomorphic
they are logically indistinguishable. In other words, ifM and N are structures
over some vocabulary τ and are isomorphic then for every first-order sentence
φ over τ we have that

M |= φ if, and only if, N |= φ.

We will want to define generalise quantifiers in such a way that a quantifier
cannot distinguish between isomorphic objects either.

We say that a class of τ -structures C is closed under isomorphism if for every
structure M∈ C and every τ -structure N if M is isomorphic to N then
N ∈ C.
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A Review of Quantifiers

Before we introduce generalised quantifiers let’s first revisit out usual
neighbourhood quantifiers. Consider the formulas

∀xψ(x) and ∃xψ(x)

Syntactically these formulas are just applications of quantifiers that bind a
single variable x in a single formula ψ.

Let M be a model. We have that

M |= ∀xψ(x) if, and only if, {a ∈M :M |= ψ[a]} = M , and

M |= ∃xψ(x) if, and only if, {a ∈M :M |= ψ[a]} 6= ∅.
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Type (1) Generalised Quantifiers

We say that Q is a generalised quantifier of type (1) if

The Syntax: Q is an operator that binds a single variable in a single
formula. In other words if ψ is a formula then Qxψ is a formula in which
all free occurrences of x in ψ have been bound; and

The Semantics: there is some isomorphism-closed set of structures CQ
over the vocabulary with a single unary relation symbol and for every
formula of the form Qxψ and every structure M in the vocabulary of ψ
we have that

M |= Qxψ if, and only if, (M, {a ∈M :M |= ψ[a]}) ∈ CQ.

We define the extension of first-order logic by the quantifier Q, which we
denote by FO(Q), as we defined FO, but this time we allow ∀, ∃, and Q as
quantifiers.
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Examples

Let’s look at a few examples. In order to define a generalised quantifier it
suffices to define the corresponding class of structures.

We define the quantifier ∃>2 by letting

C∃>2 := {(M,A) : M a set, A ⊆M, |A| > 2}

Let N be a model. Let ψ be a first-order formula with a single free variable x.
We have:

N |= ∃>2xψ iff (N, {a ∈ N : N |= ψ[a]}) ∈ C∃>2

iff |{a ∈ N : N |= ψ[a]}| > 2

iff there are more than two different elements in N that satisfy ψ.
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More Examples

We define the quantifier Qinf by letting

CQinf
:= {(M,A) : M a set, A ⊆M, A is infinite}

We define the quantifier Qodd by letting

CQodd
:= {(M,A) : M a set, A ⊆M, A is finite and |A| is odd}

We define the quantifier Qmaj by letting

CQmaj
:= {(M,A) : M a set, A ⊆M, A is finite and |A| > |M |

2
}
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Application to Natural Language

In the 1960s Richard Montague noted that noun phrases can be identified with
subsets of some domain. In the 1980s linguists and logicians working on
model-theoretic approaches with generalised quantifiers to natural language
semantics greatly expanded on this observation.

Example: “Some linguists study.”

The noun phrase “some linguists”, which consists of a determiner (“some”)
and a noun (“linguists”) can be identified with those subsets of our domain
that contain “some linguists”. In other words, we can identify this noun
phrase with the generalised quantifier QSL defined by letting

CQSL
:= {(M,A) : M a set, A ⊆M,A contains at least one linguist}
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A Natural Criticism

There are somethings very unsatisfying about this approach. We have now a
generalised quantifier that corresponds to “some linguists”, but this bundles
together the determiner in such a way that we cannot make sense of it without
referring directly to the universe in question.

This seams wrong. Surely the meaning of expressions such as “most”,
“always”, “every”, etc. do not depend on the particular objects we are
considering?

We need a more general generalised quantifier.
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Generalised Quantifiers

Let τ := {R1, . . . , Rt} be a vocabulary consisting of only relations and let ri
be the arity of Ri. A type (r1, . . . , rt) generalised quantifier Q is defined as
follows.

Syntactically: Q is an operator that binds the variables ~x1, . . . , ~xt, where
each ~xi is a tuple of ri variables, and such that if ψ1, . . . , ψt are formulas
then

Q~x1, . . . , ~xt(ψ1, . . . , ψt)

is a formula.

Semantically: there is some isomorphism-closed set CQ of τ -models such
that for every model M and formulas ψ1, . . . , ψt

M |= Q~x1, . . . , ~xt(ψ1, . . . , ψt) iff (M,ψM
1 , . . . , ψM

t ) ∈ CQ,

where

ψM
i := {~a ∈Mri :M |= ψi[~a]}.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 6th November 2019 18 / 25



Back to Natural Language

We can now model the application of a determiner using (1, 1) generalised
quantifiers.

Earlier Example: “Some linguists study.”

Recall, a (1, 1) generalised quantifier is defined over the vocabulary {R1, R2},
where both relations are unary relation symbols.

Let us define Qsome defined by letting

CQsome
:= {(M,A,B) : A,B ⊆M,A ∩B 6= ∅}.

Now let φL(x) and φS(x) be formulas such that for a model M with some
appropriate universe (say the set of all people) we have

for every a ∈M , a is a linguist iff M |= ψL[a] and

for every a ∈M , a studies iff M |= ψS [a].

The above example then corresponds to Qsomex1x2(φL, φS). We can handle
many other determiners and similar expressions using generalised quantifiers.
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Comparing Quantifiers

We have all of these quantifiers floating around. We can use them to define
different extensions of first-order logic. We might be interested in comparing
these extensions and understanding which are more expressive than others.

What do we mean by “more expressive”?

We write FO( ~Q1) ≤ FO( ~Q2) and say that FO( ~Q1) is at most as expressive as

FO( ~Q2) if for every vocabulary τ and every formula φ1 in FO( ~Q1) over τ there

is some formula φ2 in FO( ~Q2) over τ such that mod(φ1) = mod(φ2).

If FO( ~Q1) ≤ FO( ~Q2) and FO( ~Q2) ≤ FO( ~Q1) we say that these two logics are

equally expressive and write FO( ~Q2) ≡ FO( ~Q1).
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Example

Recall the quantifier ∃>2 we defined earlier. We now show that
FO(∃>2) ≡ FO. Let φ be a formula in FO(∃>2) of the form

φ := ∃>2xψ,

where ψ is a FO-formula. Let

φ′ := ∃y1∃y2∃y3[(y1 6= y2 ∧ y2 6= y3 ∧ y1 6= y3)∧
(∃x(x = y1 ∧ ψ)) ∧ (∃x(x = y2 ∧ ψ)) ∧ (∃x(x = y3 ∧ ψ))].

Note that φ′ is a first-order formula over the same vocabulary as φ. It can be
seen that mod(φ) = mod(φ′). From this we can show that FO(∃>2) ≡ FO.
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Lindström and the Limits of First-Order Logic

We spoke last week about completeness and how completeness is in some sense
the defining feature of first-order logic. I cannot state this formally, but I’ll
state a slightly incorrect version of this result.

Theorem (Not Quite Lindström’s Theorem.)

If L is complete then L ≤ FO.

This is the formal version for interested listeners

Theorem (Lindström’s Theorem.)

If L is compact, has the Löwenheim property, and FO ≤ L, then FO ≡ L.
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Summary

In this lecture we

introduced syllogisms and discussed some history of quantification in
logic,

introduced the central notion of two structures being isomorphic,

we formally defined the notion of a type (1) generalised quantifier,

we discussed some applications to formal linguistics,

motivated by these applications we introduced a more general framework
for generalised quantifiers, and

we discussed how to compare extensions of first-order logic and concluded
with Lindström’s theorem.
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Some Reading (1)

This is a wonderful all-around introduction to generalised quantifiers in
lingustics in five lectures:

Lecture 1: http://www.math.helsinki.fi/logic/sellc-2010/course/
GQ-Guangzhou1.pdf

Lecture 2: http://www.math.helsinki.fi/logic/sellc-2010/course/
GQ-Guangzhou2.pdf

Lecture 3: http://www.math.helsinki.fi/logic/sellc-2010/course/
GQ-Guangzhou3.pdf

Lecture 4: http://www.math.helsinki.fi/logic/sellc-2010/course/
GQ-Guangzhou4.pdf

Lecture 5: http://www.math.helsinki.fi/logic/sellc-2010/course/
GQ-Guangzhou5.pdf
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Some Reading (2)

For those interested in syllogisms:

https://plato.stanford.edu/entries/aristotle-logic/

For those interested in further reading on generalised quantifiers in linguistics:

https://www.jstor.org/stable/25001052?seq=1 (check this one out!)

https://www.cl.cam.ac.uk/~aac10/teaching-notes/gq.pdf (these
are lecture notes, very accessible)

https://www.springer.com/gp/book/9780792331292
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