
Logic for Linguists:

Lecture 3

Gregory Wilsenach

University of Cambridge

30th October 2019

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 1 / 25

First-Order Logic: A Review (1)

Last week we introduced the syntax and semantics of first-order logic.

We start with a vocabulary and then build up first-order formulas by first
defining terms, from which we define atomic formulas, and then, by taking
Boolean combinations and applying quantifiers, we define formulas.

For example, if we take τ := {P, S}, where P and S are binary relation
symbols, meant to denote the relations “biological parent of” and “sibling of”,
then the following is a first-order formula over τ :

φ := ∀x∃y∃z[¬(x = y) ∧ ¬(y = z) ∧ ¬(x = z)

∧(S(x, y) ∧ S(y, x) ∧ P (z, x) ∧ P (z, y))].

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 2 / 25

First-Order Logic: A Review (2)

In order to make sense of such a formula we need the notion of a model. We
can think of a model as a concrete world or set of circumstances to which such
a sentence might refer. To that end a model must specify a universe of
possible objects that a formula might quantify over and must instantiate the
relevant relation, constant, and function symbols.

We might consider the τ -model M with universe {a, b, c, d} such that

PM = {(a, b), (a, c), (a, d)}, and

SM = {(a, b), (b, c), (c, a)}.

Is M a model of φ? (i.e. Do we have M |= φ?)

If not, what could be added to M to make it a model of φ?

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 3 / 25

Proofs and Their Importance

In this lecture we will discuss the theory of proofs. In the case of propositional
logic we could check if a statement was valid by writing out the truth table,
i.e. by checking the value of the formula for every valuation. The truth table is
finite, but there are 2v where v is the number of variables in the formula, so
this is always possible to do.

In first-order logic in order to check if a statement is valid in the same sense
we would need to check that it holds in every model. But this is a big
problem! The set of all models is infinite in general!

In order to solve this problem we introduce a finite syntactic notion that
allows us to verify that some new statement is true by starting with other
statements, which we call axioms, and reasoning from them. We call these
syntactic objects proofs.

In this lecture we will introduce the natural proof system.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 4 / 25

The Natural Proof System

A proof from some set of axioms is a sequence of steps, where each step is
either an axiom, an assumption, or a statement that follows from previous
steps via some rule of inference. We will spend much of the rest of the lecture
specifying these rules of inference. We write a rule of inference as follows

φ1 . . . φn
ψ

This notation is intended to denote that from φ1, . . . , φn we can immediately
derive ψ. We have for each connective (∧, ∨, ¬, →) and each quantifier (∀, ∃)
rules of inference that introduce the given symbol and rules that eliminate the
given symbol. We chain together these rules in order to build-up the proof in
a treelike structure, which will look something like this:

A
B C

D

E F
G
H

J

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 5 / 25

More on Proof Notation

When we are proving a result we write

[φ]

ψ

to denote that by assuming φ we can prove ψ. Once the assumption has been
used somewhere we say that it has been discharged and it is no longer
considered an assumption for our proof. All assumptions that are not
members of our starting set of axioms must be discharged.

Let τ be a vocabulary. Let Γ be a theory (i.e. a set of sentences) over τ and
let φ be a formula over τ . We write

Γ ` φ

to denote that there is a proof from the set of axioms Γ that derives φ. The
previous example witnesses that

{A,C,E, F} ` J.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 6 / 25

Conjunction Rules

The first rules we will consider are for conjunctions of propositions. We can
derive from two propositions their conjunction and from their conjunction we
can derive each proposition. We write this in symbols as follows:

φ ψ

φ ∧ ψ
φ ∧ ψ
φ

φ ∧ ψ
ψ

Examples:

∃xL(x) ∀xY (x)

(∃xL(x)) ∧ (∀xY (x))

(∃xL(x)) ∧ (∀xY (x))

∃xL(x)

(∃xL(x)) ∧ (∀xY (x))

∀xY (x)

We could really put any propositions in here.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 7 / 25

Implication Rules

We now consider rules for implication.

[φ]

ψ

φ→ ψ

φ φ→ ψ

ψ

Let I be the unary relation symbol meant to denote “from Iowa” and A be the
unary relation symbol meant to denote “from America”. We have the
following examples:

[I(t)]

A(t)

I(t) → A(t)

I(t) I(t) → A(t)

A(t)

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 8 / 25

Disjunction Rules

We next consider rules for disjunction.

φ

φ ∨ ψ
φ

ψ ∨ φ
φ ∨ ψ

[φ]

θ

[ψ]

θ

θ

Let NY be the unary relation symbol meant to denote “from New York”. We
have the following examples:

I(t)

I(t) ∨ ψ
I(t) ∨NY (t)

[I(t)]

A(t)

[NY (t)]

A(t)

A(t)

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 9 / 25

Biconditional Rules

We next consider rules for Biconditional statements (i.e. if and only if).

[φ]

ψ

[ψ]

φ

φ↔ ψ

φ φ↔ ψ

ψ

ψ φ↔ ψ

φ

We let BA denote the unary relation symbol meant to denote “from the big
apple”. We have the following examples:

[NY (t)]

BA(t)

[BA(t)]

NY (t)

NY (t) ↔ BA(t)

NY (t) NY (t) ↔ BA(t)

BA(t)

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 10 / 25

Negation

We next consider rules for negation.

[φ]

ψ

[φ]

¬ψ
¬φ

[¬φ]

ψ

[¬φ]

¬ψ
φ

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 11 / 25

From Propositional Logic to First-Order Logic, an
Intermission

We should note that so far the proof rules we have considered involve
conjunctions, disjunctions, negations, and implications. These are the usual
propositional connectives.

The proof system we have thus far built up can thus be applied perfectly well
to propositional logic.

Before we go on to discuss those inference rules particular to first-order logic
we first discuss an example.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 12 / 25

Example (1)

We should like to prove:

` (A→ B) → ((A ∧ C) → (B ∧ C))

The theorem we want to prove is an implication, i.e. it is of the form ψ → φ
where ψ = A→ B and φ = (A ∧ C) → (B ∧ C). When constructing a proof it
is often useful to work backwards. We need to introduce the implication
symbol, so we know our proof must be of the form

[A→ B]

(A ∧ C) → (B ∧ C)

(A→ B) → ((A ∧ C) → (B ∧ C))

Note 1: This is not a proof! We have not shown how to derive that statement
just above the line yet.
Note 2: We can use the assumption A→ B as many times as we like, we know
for sure it will be discharged in the final step.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 13 / 25

Example (2)

We next notice that (A ∧ C) → (B ∧ C) is also an implication, and so we can
similarly prove it by assuming A∧C and proving B ∧C, and so our proof now
looks something like:

[A→ B], [A ∧ C]

B ∧ C
(A ∧ C) → (B ∧ C)

(A→ B) → ((A ∧ C) → (B ∧ C))

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 14 / 25

Example (3)

So now how do we prove B ∧C? We could prove B and C separately and then
use the ∧-introduction rule. Our proof is now looks something like:

[A→ B], [A ∧ C]

B

[A→ B], [A ∧ C]

C
B ∧ C

(A ∧ C) → (B ∧ C)

(A→ B) → ((A ∧ C) → (B ∧ C))

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 15 / 25

Example (4)

Now, how shall we prove both B and C? Well we can prove C immediately
from A ∧ C using the ∧-elimination rule. Our proof now looks something like:

[A→ B], [A ∧ C]

B

[A ∧ C]

C
B ∧ C

(A ∧ C) → (B ∧ C)

(A→ B) → ((A ∧ C) → (B ∧ C))

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 16 / 25

Example (5)

To prove B we notice that we can deduce A from A ∧ C using the
∧-elimination and then deduce B from A→ B using →-elimination. We arrive
finally at:

[A ∧ C]

A [A→ B]

B

[A ∧ C]

C
B ∧ C

(A ∧ C) → (B ∧ C)

(A→ B) → ((A ∧ C) → (B ∧ C))

Q.E.D. Now back to inference rules for first-order logic.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 17 / 25

Universal Quantification

We first need to discuss the notion of a substitution. For a term t, a variable
x, and a formula φ we write φ[t/x] to denote the formula defined by replacing
each instance of the variable x with the term t. We now consider the rules for
universal quantification.

φ[t/v]

∀vφ
∀vφ
φ[t/v]

We should note that both of the above rules assume that t does not appear in
φ or any undischarged assumption in the proof of φ[t/v]. Let F be the binary
relation meant to denote “is friends with” and let Bob be a constant symbol.
We have the following examples:

∃xF (v, x)[t/v]

∀v∃xF (v, x)

∀v∃xF (v, x)

∃xF (Bob, x)

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 18 / 25

Existential Quantification

The rules for universal quantification are as follows:

φ[t/v]

∃vφ ∃vφ
[φ[t/v]]

ψ

ψ

We should note that both of the above rules assume that t does not appear in
∃vφ or any undischarged assumption other than φ[t/v] in the proof of ψ. We
have the following examples:

∃xR(v, x)[Bob/v]

∃v∃xR(v, x) ∃vM(Mary, v)

[M(Mary, v)[v/t]]

ψ

ψ

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 19 / 25

Equality

The final proof rules are those for equality.

t = t
φ[s/v] s = t

φ[t/v]

φ[s/v] t = s

φ[t/v]

We have the following examples:

Bob = Bob
∃xF (x,Bob) t = Bob

∃xF (x, t)

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 20 / 25

Exercise

Try and Prove:

∃x∀yR(x, y) ` ∀y∃xR(x, y)

An instance of this problem: “if there is a person who is friends with
everybody then for every person there exists at least one person who is their
friend.”

What about the converse of this statement: “if every person has at least one
friend then there is one person who is friends with everybody.” Is that true?
What goes wrong if you try to prove

∀x∃yR(x, y) ` ∃y∀xR(x, y)?

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 21 / 25

Soundness

Let τ be a vocabulary. Let Γ be a theory and φ a formula over τ . We recall
that Γ entails φ if for every τ -model M if M |= Γ then M |= φ.

We say that a proof system is sound if for every vocabulary τ and every
theory Γ and formula φ over γ if Γ ` φ then Γ entails φ. In other words, if φ is
provable from Γ then if all of the sentences in Γ are true then φ is true. This
might informally say that “all provable implications are valid.”

It would be wonderful to have the converse, that “all valid implications are
provable”...

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 22 / 25

Completeness

We say that a proof system is complete if for every theory Γ and every
formula φ if Γ entails φ then Γ ` φ.

Astoundingly, this proof system is complete for first-order logic.

Theorem (The Completeness Theorem)

The natural deduction system for first-order logic is both sound and complete.

I mentioned earlier that there are many other proof systems for first-order
logic, including: Herlbert-style deduction, the sequent calculus, the tableaux
method, resolution, etc. We can prove completeness for appropriate systems in
each case.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 23 / 25

Summary

In this lecture we

introduced the notion of a formal proof and discussed the natural proof
system,

defined all of the rules for natural proofs for propositional logic and gave
an example,

extended this proof system in order to define the natural proof system for
first-order logic, and

defined the notions of soundness and completeness and stated the
completeness theorem.

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 24 / 25

Reading Material

Here are some good notes on natural deduction:

https://cs.anu.edu.au/courses/comp2600/lectures/PropND.pdf

https:

//cs.anu.edu.au/courses/comp2600/lectures/FirstOrderND.pdf

https://leanprover.github.io/logic_and_proof/natural_

deduction_for_first_order_logic.html

Here is a very short paper critically discussing natural deduction in the
context of natural language:

http://www.cs.toronto.edu/~trebla/eq-wiltink.pdf

Here is a paper using natural deduction to automate inferring knowledge from
a provided text:

http://www.cs.vsb.cz/duzi/Paper143.pdf

Gregory Wilsenach (University of Cambridge) Logic for Linguists 30th October 2019 25 / 25

https://cs.anu.edu.au/courses/comp2600/lectures/PropND.pdf
https://cs.anu.edu.au/courses/comp2600/lectures/FirstOrderND.pdf
https://cs.anu.edu.au/courses/comp2600/lectures/FirstOrderND.pdf
https://leanprover.github.io/logic_and_proof/natural_deduction_for_first_order_logic.html
https://leanprover.github.io/logic_and_proof/natural_deduction_for_first_order_logic.html
http://www.cs.toronto.edu/~trebla/eq-wiltink.pdf
http://www.cs.vsb.cz/duzi/Paper143.pdf

	Introduction

