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Review: Propositional Logic

We have so far discussed propositional logic, which begins with atomic
propositions provides us with a calculus for constructing new propositions by
stringing together these atoms using logical connectives (∧, ∨, ¬, →). We
recall that a formula looked something like:

(a→ b)→ (¬a ∧ b).

We also introduced some basic concepts and terminology (e.g. the notion of a
tautology).

We showed how one might convert a natural language argument into
propositional form. We then showed how one might recognise the validity of a
propositional formula and establish the validity of an argument.
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Today: Predicate (First-Order) Logic

In first-order logic we suppose that atomic propositions have some structure.
Roughly, these propositions are built-up from atomic formulas strung together
by Boolean connectives and quantifiers.

In other words these propositions are of the form

“Every Greek is mortal.”

“There exists a man named George W. Bush.”

“Every person had or has a mother.”

“For every number x and there exists a number y such that x + y = 0.”

Note at this point that in order to formalise these sentences we will not only
need existential and universal quantifiers, but also some notion of assigning a
constant (e.g. “George W. Bush”), a relation (e.g. “mother of”), and a
function (e.g. “+”).
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Mathematical Background (1)

We will move onto the formal discussion in a moment, but let’s begin with a
review of a few basic notions from mathematics.

We are all familiar with the notion of a set of objects. For example

S := {Steve,Mary, the flowerpot in my room},
N := {0, 1, 2, . . .}, and

X := {x : x is an English sentence}.

We write X ⊆ Y if for every element x ∈ X we have x ∈ Y (in other words X
is a subset of Y ).

Let X and Y be sets. We write X × Y to denote the Cartesian product of X
and Y defined as

X × Y := {(x, y) : x ∈ X, and y ∈ Y }.

For example, the Cartesian plane, R× R, which consists of pairs of real
number.
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Mathematical Background (2)

Let X1, . . . , Xr be a sequence of non-empty sets. We can similarly define

X1 × . . .×Xr := {(x1, . . . , xr) : x1 ∈ X1 and . . . and xr ∈ Xr}.

A relation is a subset of some Cartesian product. In other words a relation is a
set R such that R ⊆ X1 × . . .×Xr. We say that R has arity r.

Let’s look at a few examples. Let S be the set of people in this room. Let
R := {(x, y) : x, y ∈ S and x and y are friends}. Let D be the set of desks in
this room. Then T := {(x, y) : x ∈ S and y ∈ D and x is sitting behind y}.

A function f : X → Y associates every element in x with some element y ∈ Y ,
which we call f(x). We have that for all x1, x2 ∈ X and x1 = x2 then
f(x1) = f(x2). We can more formally understand such a function as a relation
f ⊆ X × Y .
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Syntax (1)

We now define the syntax of first-order logic formally. We first define the
notion of a vocabulary. A vocabulary τ is a set containing

constant symbols, usually denoted by the letters c, d, e, . . .,

relation symbols, usually denoted by the letters R, T, S, . . ., and

function symbols, usually denoted by the letters f, g, h, . . ..

We associate every relation and function symbol with some natural number,
which we call its arity.

We always have available to us a sequence of variables x1, x2, x2, . . .. We often
use x, y, z, . . . to denote variables.

We define the terms of first-order logic in the vocabulary τ such that

every variable is a term,

every constant symbol in τ is a term, and

for every function symbol f in τ of arity r and every sequence of terms
t1, . . . , tr we have that f(t1, . . . , tr) is a term.
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Syntax (2)

The atomic first-order formulas in the vocabulary τ are defined as follows

for every relation symbol R in τ of arity r and every sequence of terms
t1, . . . , tr we have that R(t1, . . . , tr) is an atomic formula, and

for every pair of terms t and s we have that t = s is an atomic formula.

The first-order formulas in the formulas in the vocabulary τ are defined as
follows

every atomic formula is a formula,

if φ is a formula then ¬φ is a formula,

if φ and ψ are formulas then ψ ∧ φ, ψ ∨ φ, and ψ → φ are formulas, and

if φ is a formula and x is a variable then ∀xφ and ∃xφ are formulas.

We say a variable x appears free in φ if it appears in a scope not bound by a
quantifier, otherwise we say x appears bound. We write φ(~x) to denote that
the free variables in φ appear amongst ~x. We say that φ is a sentence if no
variable appears free in φ.
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Examples

Let’s review our examples from earlier.

1 “Every Greek is mortal.”

2 “There exists a man named George W. Bush.”

3 “Every person had or has a mother.”

4 “For every number x and there exists a number y such that x + y = 0.”

Let τ := {G,M} consist of two unary (i.e. arity 1) relation symbols meant to
denote the properties of being Greek and mortal, respectively. We can write
φ1 := ∀x(G(x)→M(x)).

Let τ := {M, c} where M is a unary relation meant to denote the property of
being a man and c is a constant symbol mean to denote the person George W.
Bush. We can write φ2 := ∃x(M(x) ∧ (x = c)).

Let τ := {P,M} where P is a unary relation meant to denote the property of
being a person and M is a binary (arity 2) relation meant to denote the
property that a is the mother of b. We can write
φ3 := ∀x(P (x) ∧ (∃yM(y, x))).
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What Do We Want From a Model?

You might be asking: So we are saying there “exists this” or “for all that” but
from where are we getting these objects? This is particularly important as the
existential and universal quantifiers don’t specifically quantify over a set.

We shall now, as we did for propositional logic, define the notion of a model
and define the semantics of a sentence.

Intuitively, a model is some domain of objects together with some
interpretation of each symbol in the appropriate vocabulary. A given formula
might be true or false depending on the particular model (i.e. depending on
the particular way these symbols are interpreted).

The semantics of a formula will be the set of all models for which the formula
is true.
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Models

Let τ := {c1, . . . , R1, . . . , f1, . . .} be a vocabulary. We write ri for the arity of
the relation symbol Ri and si for the arity of the function symbol fi.

A τ -model (or τ -structure) is a structure M consisting of the following

a non-empty set M (called the universe ofM),

for each ci a designated element cMi ∈M ,

for each Ri a relation RM
i ⊆Mri , and

for each fi a function fMi : Msi →M .

In other words M interprets all of these symbols that we’ve been using in our
sentences.
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Example

Let τ consist of a single binary relation R meant to denote “favourite
composer of”.

Let M be the model where

M := {b, h, s}, which are meant to denote Beethoven, Handel, and
Scarlattii, respectively, and

RA := {(h, b), (h, s), (s, h)}.

In other words M has as its universe the three denoted composers and
encodes the fact that Handel was Beethoven’s favourite composer and that
Scarlatti and Handel where each other’s favourite composers.
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Interpreting a Formula in a Model

We are now ready to formally define how a formula can be interpreted in a
model.

Let τ := {c1, . . . , R1, . . . , f1, . . .} be a vocabulary. Let M be a τ -model. Let
t(~x) be a first-order term over τ and ~a be a sequence of elements in M . We
define the value of t for M and ~a, which we denote by tA[~a], as follows

if t is equal to some xi in ~x then tA[~a] = ai,

if t is a constant symbol c then tA[~a] = cMi , and

if t is of the form f(t1, . . . , tr) for some function symbol f of arity r and
sequence of terms t1, . . . , tr, then

tA[~a] = fM(tA1 [~a], . . . , tA1 [~a]).
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Interpreting a Formula in a Model (cont.)

Now let φ(~x) be a first-order formula in τ and, again, ~a be a sequence of
elements in M . We say that M is a model of φ or satisfies φ under the
assignment ~a, and write M |= φ[~a],

if φ is of the form t1 = t2 for terms t1 and t2 then M |= φ[~a] iff
tA1 [~a] = tA2 [~a],

if φ is of the form R(t1, . . . , tr) where R is a relation symbol and t1, . . . , tr
are terms, then M |= φ[~a] iff RM(tA1 [~a], . . . , tA1 [~a]),

if φ is of the form ¬ψ then M |= φ[~a] iff it is not the case that M |= ψ[~a],

if φ is of the form ψ ∧ θ then M |= φ[~a] iff M |= ψ[~a] and M |= θ[~a],

if φ is of the form ψ ∨ θ then M |= φ[~a] iff M |= ψ[~a] or M |= θ[~a] (or
both),

if φ is of the form ∃yψ then M |= φ[~a] iff there is some b ∈M such that
M |= ψ[~a, b] (by which I mean ~x is assigned to ~a and y is assigned to b),
and

if φ is of the form ∀yψ then M |= φ[~a] iff for every b ∈M we have
M |= ψ[~a, b].
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Theories and Entailment

Let φ be a sentence. We let mod(φ) denote the set of all models M such that
M |= φ. We consider mod(φ) to be the semantics of φ.

We say that φ is a tautology if mod(φ) is the set of all model over the
vocabulary of φ.

We call a set of sentences (all over the same vocabulary) a theory. If T is a
theory we write T |=M to denote that M satisfies all of the formulas in T
and write mod(T ) to denote the set of models that satisfy all of the sentences
in T . We say that a theory U axiomatises T if mod(T ) = mod(U). We say
that T is consistent if mod(T ) is non-empty.

We can get from this a purely semantic definition of entailment. We say that
T entails a sentence φ if mod(T ) ⊆ mod(φ).
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Summary

What you should get from this lecture

familiarity with basic mathematical concepts and notation that we

the intuition behind first-order logic,

the formal syntax and semantics of the logic,

the notion of a model and how they can be used to define the semantics
of first-order logic.

This lecture has been a lot of definitions and examples. Next week we will
begin to look at proof theory and how these ideas connect up very neatly with
the semantics notions discussed today. We will also look at extensions of
first-order logic with generalised quantifiers.
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Interesting Reading

Notes on first-order logic:

https://www.cs.ox.ac.uk/people/james.worrell/lecture9-2015.pdf

https://www.cs.utexas.edu/ mooney/cs343/slide-handouts/fopc.4.pdf

Discussions on converting natural language to first-order logic:

https://cs.nyu.edu/faculty/davise/ai/folguide.pdf

Here is a website which automates the conversion from natural language to
first-order logic:

http://attempto.ifi.uzh.ch/race/
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