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Linear Programming

Linear Programming is an important algorithmic tool for solving a large
variety of optimization problems.

It was shown by (Khachiyan 1980) that linear programming problems can
be solved in polynomial time.
We have a set C of constraints over a set V of variables.
Each c ∈ C consists of ac ∈ QV and bc ∈ Q.

Feasibility Problem: Given a linear programming instance, determine if
there is an x ∈ QV such that:

aTc x ≤ bc for all c ∈ C

Optimization Problem: Given a linear programming instance and a linear
objective function f , find a feasible point x for which f(x) is maximum.
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Linear Programs for Hard problems

In the 1980s there was a great deal of excitement at the discovery that
linear programming could be done in polynomial time.

This raised the possibility that linear programming techniques could be
used to efficiently solve hard problems.

Many proposals were put forth for encoding hard problems (such as the
Travelling Salesman Problem) (TSP) as linear programs.

(Yannakakis 1991) proved that any encoding of TSP as a linear program,
satisfying natural symmetry conditions, must have exponential size.
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Travelling Salesman Problem

Given a set of V of n vertices and a distance matrix C = QV×V , find

min
π∈[n]bij→V

∑
i∈[n]

cπ(i)π(i+1) + cπ(n)π(1)

To formulate this as a linear optimization problem, introduce a set of
variables:

X = {xij | i, j ∈ V }.

So, a graph is a function G : X → {0, 1}.
Let P ⊆ {0, 1}X be the collection of simple cycles of length n.
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TSP polytope

Let conv(P ) ⊆ QX be the convex hull of P .
That is, the set of ~y ∈ QX such that

~y =
∑
~x∈P

λ~x~x with λ~x ≥ 0 and
∑
~x∈P

λ~x = 1.

TSP: min
∑
i,j∈V cijxij over ~x ∈ P .

This is equivalent to minimizing
∑
i,j∈V cijxij over conv(P ).

We call conv(P ) the TSP polytope.

conv(P ) has exponentially many facets.
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Extended Formulations

Could conv(P ) be obtained as the projection of a polytope with a small
number of facets?

Is there a small Q ⊆ QX ×QY such that

{~x | ∃~y(~x, ~y) ∈ Q} = conv(P )?

If a description of such a Q could be obtained in polynomial time in n,
then P = NP.

If such a Q of polynomial size exists, then NP ⊆ P/poly.

Also note that by adding inequalities x ≤ G(x) for a graph
G : X → {0, 1}, we obtain a polytope QG ⊆ QX ×QY which is
non-empty if, and only if, G contains a Hamiltonian cycle.
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Yannakakis

Say Q ⊆ QX ×QY is symmetric if for every π ∈ SV , there is a σ ∈ SY
such that

Q(π,σ) = Q

Here, we extend the action of π to V × V , and hence to QX .
similarly σ to QY .

Theorem (Yannakakis)
Any symmetric Q ⊆ QX ×QY whose projection on QX is conv(P ) has
exponentially many facets.

This is derived from a similar lower bound for the matching polytope.
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Matching Polytope

Fix V with |V | = 2n and X = {xij | i, j ∈ V }
M ⊆ {0, 1}X is the set of graphs that are perfect matchings on V .

conv(M) has an explicit description given by (Edmonds):

xij ≥ 0, ∀i, j ∈ V∑
j

xij = 1 ∀i ∈ V

∑
i∈S;j 6∈S

xij ≥ 1 ∀S ⊆ V with |S| odd,

This has exponentially many facets.
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Lower Bounds

Theorem (Yannakakis)
Any symmetric Q ⊆ QX ×QY whose projection on QX is conv(M) has
exponentially many facets.

The lower bound on the TSP polytope is obtained by a reduction from
the lower bound on the matching polytope.

What if we drop the condition of symmetry?

A long line of work since (Yannakakis 1991) has looked at relaxing the
notion of symmetry. This culminated in (Rothvoß 2013) showing an
exponential lower bound even without the requirement of symmetry.
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But. . . Linear Programming is P-complete

Any problem in P can be solved by coding it is a linear program.

Suppose L ⊆ {0, 1}∗ is in P.

For any n, let X = {xi | i ∈ [n]}.

There is a polytope Q ⊆ QX ×QY of size poly(n) whose projection on
QX includes all points in L ∩ {0, 1}X and excludes all points in
{0, 1}X \ L.

Note: not necessarily the convex hull of L ∩ {0, 1}X .
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Circuits to LP

Take a circuit C of poly-size deciding L ∩ {0, 1}X .
Introduce a new variable g for each gate of C.

g = ¬u : 0 ≤ g = 1− u ≤ 1

g = u ∧ v : 0 ≤ g ≤ u ≤ 1

0 ≤ g ≤ v ≤ 1

g ≤ u+ v − 1

and similarly for other gates.

The argument works for the non-uniform class P/poly.
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Convex Hulls and Separating Polytopes

For the matching and TSP polytopes, i.e. the convex hull of solutions, we
have exponential lower bounds on both symmetric (by Yannakakis) and
general (by Rothvoß) versions.

For polytopes that separate solutions from non-solutions we have
poly-size ones for matching, and we cannot hope for lower bounds
greater than poly-size for TSP.

What about symmetric polytopes that separate solutions from
non-solutions?
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Symmetric Linear Programs

Fix X = {xij | i, j ∈ V } for a fixed vertex set V .
Consider a class C of graphs G : X → {0, 1}.

We say that a polytope Q ⊆ QX ×QY decides C if its projection on QX
includes C and excludes its complement.

Q is symmetric if for each π ∈ SV there is a σ ∈ SY such that
Q = Q(π,σ).
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The Power of Symmetric LP

In (Atserias, D., Ochremiak 2018) we show that the following are
equivalent for a class of graphs C.

1. C is decided by a family of polynomial-size, symmetric linear
programs.

2. C is decided by a family of polynomial-size, symmetric threshold
circuits.

3. C is decided by a family of polynomial-size formulas of Ck for some
fixed k.

In particular, C must have bounded counting width.

There are poly-size symmetric linear programs that decide the class of
graphs with perfect matchings.

There are no poly-size symmetric linear programs that decide the class of
graphs with a Hamiltonian cycle.
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Linear Programming

We can represent an instance of a linear programming feasibility problem
as a relational structure over a suitable vocabulary.

We have a set C of constraints over a set V of variables.
Each c ∈ C consists of ac ∈ QV and bc ∈ Q.
The numbers are encoded in binary over an ordered set of bit positions.

Feasibility Problem: Given a linear programming instance, determine if
there is an x ∈ QV such that:

aTc x ≤ bc for all c ∈ C
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Representing Rational Numbers

We can take the rational number

q = s
n

d

where s{1,−1} and n, d ∈ N
to be given by a structure

(B,<, S,N,D)

where < is a linear order on the domain B and S, N and D are unary
relations.

S = ∅ iff s = 1 and N and D code the binary representation of n and d.

Since the domain is ordered, it is straightforward to see that arithmetic,
in the form of addition and multiplication of numbers is definable in FPC
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Representing Rational Vectors and Matrices

A rational vector indexed by a set I:

v : I → Q

is represented by a structure over domain I ∪B with relations:

• < an order on B;

• S,N,D ⊆ I ×B

Similarly, a rational matrix M ∈ QI×J is given by a structure over
domain I ∪ J ∪B with relations:

• < an order on B;

• S,N,D ⊆ I × J ×B
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Weighted Graphs

We use a similar encoding to represent problems over weighted graphs
where the weights may be integer or rational.

For example, a graph with vertex set V with non-negative rational
weights might be considered as a relational structure over universe V ∪B
where B is bigger than the number of bits required to represent any of
the rational weights and we have

• < an order on B;

• weight relations Wn,Wd ⊆ V × V ×B
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Ellipsoid Method

The set of constraints determines a polytope
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Ellipsoid Method

x

Start at the origin and calculate an ellipsoid enclosing it.
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Ellipsoid Method

x

If the centre is not in the polytope, choose a constraint it violates.

Dawar and Wilsenach August 2021



Ellipsoid Method

x

x′

Calculate a new centre.
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Ellipsoid Method

x

x′

And a new ellipsoid around the centre of at most half the volume.
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Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.

This relies on expressing algebraic manilpulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.
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Ellipsoid Method in FPC

x
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Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.

This relies on expressing algebraic manilpulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.

So, we can take:
(
∑
c∈S

ac)
Tx ≤

∑
c∈S

bc

where S is the set of all violated constraints.
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Separation Oracle

More generally, the ellipsoid method can be used, even when the
constraint matrix is not given explicitly, as long as we can always
determine a separating hyperplane.

In particular, the polytope represented may have exponentially many
facets.

(Anderson, D., Holm 2015) shows that as long as the separation oracle
can be defined in FPC, the corresponding optimization problem can be
solved in FPC.
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Representations of Polytopes

A representation of a class P of polytopes is a relational vocabulary τ
along with a surjective function ν taking τ -structures to polytopes in P,
which is isomorphism invariant.

A separation oracle for a representation ν,P is definable in FPC if there
is an FPC formula that given a τ -structure A and a vector v ∈ QV either

• determines that v ∈ ν(A); or

• defines a hyperplane separating v from ν(A).
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Folding Polytopes

We use the separation oracle to define an ordered equivalence relation on
the set V of variables.

We also define a projection operation on polytopes which either

• preserves feasibility; or

• refines the equivalence relation further.
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Folding and Unfolding

Suppose we have σ : V → [n], for n ≤ |V |.

We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv.

Fold P ⊆ QV into Pσ ⊆ Qn.

For i ∈ [n],

(xσ̃)i :=
∑
{v∈V | σ(v)=i} xv;

(xσ)i := (xσ̃)i
|{v∈V | σ(v)=i}| .

Unfold Pσ ⊆ Qn into (Pσ)
−σ ⊆ QV .

For v ∈ V ,

(x−σ)v := xσ(v).

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ(Pσ)
−σ

x

xσ
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Folding and Unfolding

Suppose we have σ : V → [n], for n ≤ |V |.

We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv.

Fold P ⊆ QV into Pσ ⊆ Qn.

For i ∈ [n],

(xσ̃)i :=
∑
{v∈V | σ(v)=i} xv;

(xσ)i := (xσ̃)i
|{v∈V | σ(v)=i}| .

Unfold Pσ ⊆ Qn into (Pσ)
−σ ⊆ QV .

For v ∈ V ,

(x−σ)v := xσ(v).

Properties

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P 〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x) reduces to
SEP(P, x−σ), but...
only if output c agrees with σ.
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Graph Matching

Recall, in a graph G = (V,E) a matching M ⊂ E is a set of edges such
that each vertex is incident on at most one edge in M .

We saw that the existence of a perfect matching is not definable in FP.

(Blass, Gurevich, Shelah 1999) showed that for bipartite graphs this is
definable in FPC.

They conjectured that this was not the case for general graphs.

We consider the more general problem of determining the maximum
weight of a matching in a weighted graph:

G = (V,E) w : E → Q≥0
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The Matching Polytope

(Edmonds 1965) showed that the problem of finding a maximum weight
matching in G = (V,E) w : QE≥0 can be expressed as the following
linear programming problem

max w>y subject to

Ay ≤ 1V ,

ye ≥ 0, ∀e ∈ E,∑
e∈E∩W 2

ye ≤
1

2
(|W | − 1), ∀W ⊆ V with |W | odd,

(1)

Dawar and Wilsenach August 2021



Matching in FPC

A separation oracle for this polytope is definable by an FPC formula
interpreted in the weighted graph G.

As a consequence, there is an FPC formula defining the size of the
maximum matching in G.

Note that this does not allow us to define an actual matching.
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Maximum Flow

MaxFlow
Given: A capacitated graph G = (V, c), with c : V × V → Q≥0

and s, t ∈ V .
Determine: f : V × V → Q≥0 optimising

max
∑
v∈V

(f(v, t)− f(t, v)) subject to

∑
v∈V

(f(v, u)− f(u, v)) = 0, ∀u ∈ V \{s, t}

0 ≤ f(u, v) ≤ c(u, v), ∀u 6= v ∈ V.

Lemma
MaxFlow ∈ FPC.

Proof: Polytope is explicit. Use explicit SEP with FPC reduction.
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Minimum Cut

MinCut
Given: A capacitated graph G = (V, c), with c : V × V → Q≥0

and s, t ∈ V .
Determine: A set C ⊆ V with s ∈ C, t 6∈ C, and minimising∑

u∈C,v∈V \C

c(u, v).

Lemma
MinCut ∈ FPC.

Proof:

• Compute max flow f in FPC.

• Cf = {v ∈ V | non-0 capacity s; v in residual graph G|f}

Lemma
Cf is independent of f . Its the canonical minimum (s, t)-cut of G.
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Minimum Odd Cut

MinOddCut
Given: A capacitated graph G = (V, c), with c : V × V → Q≥0

and |V | even.
Determine: A set C ⊆ V with |C| odd, and minimising∑

u∈C,v∈V \C

c(u, v).

Lemma
For some s, t ∈ V , the canonical min (s, t)-cut is a min odd cut.

Proof Idea: Collapse sets of vertices while preserving existence of
some min odd cut.

Lemma
FPC can define a small set of min odd cuts.
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Matching

b-Matching
Given: G = (V,E) and A ∈ {0, 1}V×E , b ∈ NV , c ∈ QE≥0. Determine:

y ∈ NE≥0 optimising

max c>y subject to Ay ≤ b, y ≥ 0E .

Specialises to MaxMatching when b = 1V , c = 1E .

Relax LP (i.e., y ∈ QE≥0) and add constraints consistent with integral
solutions:

y(W ) ≤ 1

2
(b(W )− 1),∀W ⊆ V with b(W ) odd.

where y(W ) =
∑
e∈E,e⊆W ye and b(W ) =

∑
v∈W bv.

Theorem (Edmonds ’65)
The extremal points of the relaxed LP are integral.
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Matching, contd.

Lemma (Padberg-Rao ’82)
Given y ∈ QE≥0. There is exists a capacitated graph H such that y
violates an odd set constraint iff H has a min odd cut of value < 1.

• FPC can define H from y.

• FPC can define a small set of min odd cuts of H.

• FPC can define a small set of violated odd set constraints.

• FPC can define a canonical violated constraint (by linearity).

Lemma
There is an FPC interpretation fin[τmatch ] τvec]→ fin[τvec] expressing the
separation problem for b-Matching polytopes with respect to their
natural representation as τmatch-structures.
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Symmetric LPs

For s = O(2n
1−ε

), ε > 0:

1. a symmetric circuit of size s translates to a symmetric LP of size
poly(s); and

2. a symmetric LP of size s translates to a formula of Ck with
k = O( log s

logn ).

So, polynomial-size families of symmetric circuits and symmetric LPs are
equivalent.
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Translations

The translation from circuits to linear programs starts from the one given
by Yannakakis, but we have to

• account for majority (or threshold) gates; and

• preserve symmetry

To achieve these two feats simultaneously requires some work.
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Linear Programs to Formulas

Starting with a linear program P defining a symmetric polytope
Q ⊆ QX ×QY , where X = [n]× [n], we can:

Partition Y into orbits under the induced action of Sn;

replace the orbits with single variables by linearity.

This gives us an equivalent reduced linear program P̂ that is rigid.

We do not know if this can be done in polynomial-time, so we can’t
guarantee we get a uniform family.
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Evaluating Symmetric LPs

We have P̂ , which defines a rigid symmetric polytope Q ⊆ QX ×QŶ ,
where X = [n]× [n]

And a graph G on n vertices.

Any bijection β : V (G)→ [n] gives a polytope Qβ ⊆ QŶ . By symmetry,

these are all the same up to a permutation of Ŷ .

We show that we can obtain an LP equivalent to Qβ by a

Ck-interpretation (for k = log s
logn ) from the graph G, with advice P̂ .
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Supports

We can show that, under the action of Sn on P̂ , the stabilizer of each
variable in Y and each constraint in P̂ has a support of size k = O( log s

logn ).

Theorem
If n > 8, 1 ≤ k ≤ n/4, and G is a subgroup of Sn with [Sn : G] <

(
n
k

)
,

then there is a set S ⊆ [n] with |S| < k such that A(S) ≤ G.
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Alternating Groups

To show that we can replace the alternating group by the symmetric
group, we cannot rely on an induction on depth, as we did with circuits.

Instead, we show that if some variable in Y does not have small support,
we can construct a small (i.e. size poly(s)) graph whose automorphism
group is isomorphic to A(S).

Theorem
If n > 22, then the number of vertices of any graph whose full
automorphism group is isomorphic to An is at least
1/2
(

n
bn/2c

)
∼ 2n/

√
2πn .
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