Symmetric Computation: Lecture 3

Anuj Dawar and Gregory Wilsenach

Department of Computer Science and Technology, University of Cambridge

ESSLLI, August 2021

Cai-Fürer-Immerman Graphs

Cai-Fürer-Immerman show that there is a polynomial-time graph property that is not in FPC by constructing a sequence of pairs of graphs $G_k, H_k(k \in \omega)$ such that:

- $G_k \equiv^{C^k} H_k$ for all k.
- There is a polynomial time decidable class of graphs that includes all G_k and excludes all H_k .

In particular, the first point shows that \equiv^{C^k} (for any fixed k) does not capture isomorphism everywhere

Constructing G_k and H_k

Given any graph G, we can define a graph X_G by replacing every edge with a pair of edges, and every vertex with a gadget.

The picture shows the gadget for a vertex v that is adjacent in G to vertices w_1, w_2 and w_3 . The vertex v^S is adjacent to $a_{vw_i} (i \in S)$ and $b_{vw_i} (i \notin S)$ and there is one vertex for all even size S. The graph \tilde{X}_G is like X_G except that at one vertex v, we include v^S for odd size S.

Properties

If G is *connected* and has *treewidth* at least k, then:

- 1. $X_G \not\cong \tilde{X}_G$; and
- 2. $X_G \equiv^{C^k} \tilde{X}_G$.

(1) allows us to construct a polynomial time property separating X_G and $\tilde{X}_G.$

(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the existence of balanced separators in G. The characterisation in terms of treewidth is from (D., Richerby 07).

TreeWidth

The *treewidth* of a graph is a measure of how tree-like the graph is. A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes in a tree-like fashion.

TreeWidth

Formal Definition:

For a graph G = (V, E), a *tree decomposition* of G is a relation $D \subset V \times T$ with a tree T such that:

- for each $v \in V$, the set $\{t \mid (v,t) \in D\}$ forms a connected subtree of T; and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

We call $\beta(t) := \{v \mid (v, t) \in D\}$ the *bag* at *t*.

The *treewidth* of G is the least k such that there is a tree T and a tree-decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v,t) \in D\}| \le k+1.$

Cops and Robbers

A game played on an undirected graph G = (V, E) between a player controlling k cops and another player in charge of a robber.

At any point, the cops are sitting on a set $X \subseteq V$ of the nodes and the robber on a node $r \in V$.

A move consists in the cop player removing some cops from $X' \subseteq X$ nodes and announcing a new position Y for them. The robber responds by moving along a path from r to some node s such that the path does not go through $X \setminus X'$.

The new position is $(X \setminus X') \cup Y$ and s. If a cop and the robber are on the same node, the robber is caught and the game ends.

Strategies and Decompositions

Theorem (Seymour and Thomas 93):

There is a winning strategy for the *cop player* with k cops on a graph G if, and only if, the tree-width of G is at most k - 1.

It is not difficult to construct, from a tree decomposition of width $k,\,{\rm a}$ winning strategy for k+1 cops.

Somewhat more involved to show that a winning strategy yields a decomposition.

Cops and Robbers on the Grid

If G is the $k \times k$ toroidal grid, than the *robber* has a winning strategy in the *k*-cops and robbers game played on G.

To show this, we note that for any set X of at most k vertices, the graph $G \setminus X$ contains a connected component with at least half the vertices of G.

If all vertices in X are in distinct rows then $G \setminus X$ is connected. Otherwise, $G \setminus X$ contains an entire row and in its connected component there are at least k-1 vertices from at least k/2 columns.

Robber's strategy is to stay in the large component.

Cops, Robbers and Bijections

We use this to construct a winning strategy for Duplicator in the *k*-pebble bijection game on X_G and \tilde{X}_G .

- A bijection $h: X_G \to \tilde{X}_G$ is good bar v if it is an isomorphism everywhere except at the vertices v^S .
- If h is good bar v and there is a path from v to u, then there is a bijection h' that is good bar u such that h and h' differ only at vertices corresponding to the path from v to u.
- Duplicator plays bijections that are good bar v, where v is the *robber position* in G when the cop position is given by the currently pebbled elements.

Counting Width

For any class of structures \mathcal{C} , we define its *counting width* $\nu_{\mathcal{C}}:\mathbb{N}\to\mathbb{N}$ so that

 $\nu_{\mathcal{C}}(n)$ is the least k such that \mathcal{C} restricted to structures with at most n elements is closed under \equiv^{C^k} .

Every class in FPC has counting width bounded by a *constant*.

The *CFI* construction based on *grids* gives a class of graphs in P that has counting width $\Omega(\sqrt{n})$.

This can be improved to $\Omega(n)$ by taking, instead of grids, expander graphs.

Interpretations

Given two relational signatures σ and τ , where $\tau = \langle R_1, \ldots, R_r \rangle$, and arity of R_i is n_i

A first-order interpretation of τ in σ is a sequence:

 $\langle \pi_U, \pi_1, \ldots, \pi_r \rangle$

of first-order σ -formulas, such that, for some d:

- the free variables of π_U are among x_1, \ldots, x_d ,
- and the free variables of π_i (for each *i*) are among $x_1, \ldots, x_{d \cdot n_i}$.
- *d* is the dimension of the interpretation.

Interpretations II

An interpretation of τ in σ maps σ -structures to τ -structures.

If A is a σ -structure with universe A, then $\pi(A)$ is a structure (B, R_1, \ldots, R_r) with

- $B \subseteq A^d$ is the relation defined by π_U .
- for each *i*, R_i is the relation on *B* defined by π_i .

An FO *reduction* of a class of structures C to a class \mathcal{D} is a single FO interpretation θ such that $\mathbb{A} \in C$ if, and only if, $\theta(\mathbb{A}) \in \mathcal{D}$. We write $C \leq_{\mathsf{FO}} \mathcal{D}$.

FPC-Reductions

More generally, we can defined reductions in any logic, e.g. FPC.

If $\mathcal{C} \leq_{\mathsf{FPC}} \mathcal{D}$ then

$$\nu_{\mathcal{D}} = \Omega(\nu_{\mathcal{C}}^{1/d}).$$

If the reduction takes C-instances to D-instances of *linear size*, then

 $\nu_{\mathcal{D}} = \Omega(\nu_{\mathcal{C}}).$

By means of reductions, we can estalish 3-Sat, XOR-Sat, 3-Colourability, Hamiltonicity all have counting width $\Omega(n)$.

Relational Machines

Input: A relational database *Store*: relational and numerical registers

Operations: join, projection, complementation, counting

Properites expressible in FPC are *exactly* those decidable by such a machine in *polynomial time*.

Dawar and Wilsenach

Relational Machines - Formally

Fix a relational vocabulary $\sigma = (R_1, \ldots, R_m)$.

The relational machine M has:

- fixed relational registers: R_1, \ldots, R_m ;
- a fixed number of *variable* relational registers P_1, \ldots, P_s each with fixed arity; and
- a fixed number of *numerical registers*: c_1, \ldots, c_t .

Relational Machines - Formally

The program of M is composed of *atomic actions*

 $P_{i} := R_{j}; P_{i} := P_{j} \cup P_{k}; P_{i} := \pi_{a_{1},...,a_{k}} P_{j};$ $P_{i} := P_{j} \bowtie_{a_{1},...,a_{k}} P_{k}; P_{i} := \overline{P_{j}}.$ $c_{i} := c_{i} + 1;$ $c_{i} := \# P_{j}$

and control commands:

 $\begin{array}{l} \textit{if } c_i = 0 \textit{ then } p \textit{ else } c_i := c_i - 1 \\ \textit{while } c_1 \neq 0 \textit{ } p \end{array}$

Exercise: Show that a class of relational structures is accepted by a *polynomial-time* relational machine if, and only if, it is definable in FPC.

Circuits

A circuit *C* is a *directed acyclic graph* with:

- source nodes (called *inputs*) labelled x_1, \ldots, x_n ;
- any other node (called a *gate*) with k incoming edges is labelled by a Boolean function g: {0,1}^k → {0,1} from some fixed basis (*e.g.* AND/OR/NOT);
- some gates designated as *outputs*, y_1, \ldots, y_m .

C computes a function $f_C: \{0,1\}^n \to \{0,1\}^m$ as expected.

Circuit Complexity

A language $L \subseteq \{0,1\}^*$ can be described by a family of Boolean functions:

 $(f_n)_{n \in \omega} : \{0, 1\}^n \to \{0, 1\}.$

Each f_n may be given by a *circuit* C_n made up of AND/OR/NOT gates, with n inputs and one output.

If the size of C_n is bounded by a polynomial in n, the language L is in the class P/poly.

If, in addition, the function $n \mapsto C_n$ is computable in polynomial time, L is in P.

Circuit Complexity Classes

For the definition of P/poly and P, it makes no difference if the circuits only use {AND, OR, NOT} or a richer basis with *ubounded fan-in; threshold; or counting gates.*

However,

 AC_0 — languages accepted by bounded-depth, polynomial-size families of circuits with unbounded fan-in AND and OR gates and NOT gates;

and

 TC_0 — languages accepted by bounded-depth, polynomial-size families of circuits with unbounded fan-in AND and OR and threshold gates and NOT gates;

are different.

A threshold gate $\mathsf{Th}_t^k : \{0,1\}^k \to \{0,1\}$ evaluates to 1 iff at least t of the inputs are 1.

Invariant Circuits

Instead of a language $L \subseteq \{0, 1\}^*$, consider a class C of directed graphs. This can be given by a family of *Boolean functions*:

$$(f_n)_{n \in \omega} : \{0, 1\}^{n^2} \to \{0, 1\}.$$

A graph on vertices $\{1, ..., n\}$ has n^2 *potential* edges. So the graph can be treated as a string in $\{0, 1\}^{n^2}$.

Since C is closed under isomorphisms, each function f_n is invariant under the natural action of S_n on n^2 .

We call such functions graph invariant.

Symmetric Circuits

More generally, for any *relational vocabulary* τ , let

$$\tau(n) = \sum_{R \in \tau} n^{\operatorname{arity}(R)}$$

We take an encoding of *n*-element τ -structures as strings in $\{0,1\}^{\tau(n)}$ and this determines an action of S_n on such strings.

A function $f : \{0,1\}^{\tau(n)} \to \{0,1\}$ is τ -invariant if it is invariant under this action.

We say that a circuit C with inputs labelled by $\tau(n)$ is *symmetric* if every $\pi \in S_n$ acting on the inputs of C can be extended to an *automorphism* of C.

Every symmetric circuit computes an invariant function, but the converse is false.

Logic and Circuits

Any formula of φ first-order logic translates into a uniform family of circuits C_n

For each subformula $\psi(\overline{x})$ and each assignment \overline{a} of values to the free variables, we have a gate. Existential quantifiers translate to big disjunctions, etc.

The circuit C_n is:

- of *constant* depth (given by the depth of φ);
- of size at mose c · n^k where c is the number of subformulas of φ and k is the maximum number of free variables in any subformula of φ.
- symmetric by the action of $\pi \in S_n$ that takes $\psi[\overline{a}]$ to $\psi[\pi(\overline{a})]$.

FP and Circuits

For every sentence φ of FP there is a k such that for every n, there is a formula φ_n of L^k that is equivalent to φ on all graphs with at most n vertices.

The formula φ_n has

- *depth* n^c for some constant c;
- at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family of *polynomial-size, symmetric* circuits.

FPC and Circuits

For every sentence φ of FP there is a k such that for every n, there is a formula φ_n of C^k that is equivalent to φ on all graphs with at most n vertices.

The formula φ_n has

- *depth* n^c for some constant c;
- at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family of *polynomial-size, symmetric* circuits in a basis with *threshold gates*.

Note: we could also alternatively take a basis with *majority* gates.

Relating Circuits and Logic

The following are established in (Anderson, D. 2017):

Theorem

A class of graphs is accepted by a *P*-uniform, polynomial-size, symmetric family of Boolean circuits *if*, and only *if*, it is definable by an FP formula interpreted in $G \uplus ([n], <)$.

Theorem

A class of graphs is accepted by a *P*-uniform, polynomial-size, symmetric family of threshold circuits *if*, and only *if*, it is definable in FPC.

Some Consequences

We get a natural and purely circuit-based characterisation of FPC definability.

Inexpressibility results for FP and FPC yield lower bound results against natural circuit classes.

- There is no polynomial-size family of symmetric Boolean circuits deciding if an *n* vertex graph has an even number of edges.
- Polynomial-size families of uniform symmetric *threshold circuits* are more powerful than Boolean circuits.
- Invariant circuits *cannot* be translated into equivalent symmetric threshold circuits, with only polynomial blow-up.

Automorphisms of Symmetric Circuits

For a symmetric circuit C_n we can assume *w.l.o.g.* that the automorphism group is the symmetric group S_n acting in the natural way.

That is:

- Each $\pi \in S_n$ gives rise to a *non-trivial* automorphism of C_n (otherwise C_n would compute a constant function).
- There are no *non-trivial* automorphisms of C_n that fix all the inputs (otherwise there is redundancy in C_n that can be eliminated).

We call a circuit satisfying these conditions *rigid*.

By abuse of notation, we use $\pi \in S_n$ both for permutations of [n] and automorphisms of C_n .

Stabilizers

For a gate g in C_n , Stab(g) denotes the *stabilizer group of* g, i.e. the *subgroup* of S_n consisting:

$$\operatorname{Stab}(g) = \{ \pi \in S_n \mid \pi(g) = g \}.$$

The *orbit* of g is the set of gates $\{h \mid \pi(g) = h \text{ for some } \pi \in S_n\}$

By the *orbit-stabilizer* theorem, there is one gate in the orbit of g for each *co-set* of $\operatorname{Stab}(g)$ in S_n . Thus the size of the *orbit* of g in C_n is $[S_n : \operatorname{Stab}(g)] = \frac{n!}{|\operatorname{Stab}(g)|}$. So, an upper bound on $\operatorname{Stab}(g)$ gives us a lower bound on the orbit of g. Conversely, knowing that the orbit of g is at most polynomial in n tells us that $\operatorname{Stab}(g)$ is *big*.

Supports

For a group $G \subseteq S_n$, we say that a set $X \subseteq [n]$ is a *support* of G if For every $\pi \in S_n$, if $\pi(x) = x$ for all $x \in X$, then $\pi \in G$.

In other words, G contains all permutations of $[n] \setminus X$. So, if |X| = k, $[S_n : G]$ is at most $\frac{n!}{(n-k)!} \le n^k$.

Groups with small support are *big*.

The converse is clearly false since $[S_n : A_n] = 2$, but A_n has no support of size less than n - 1.

Note: For the family of circuits $(C_n)_{n \in \omega}$ obtained from an FPC formula there is a constant k such that all gates in each C_n have a support of size at most k.

Support Theorem

In *polynomial size* symmetric circuits, all gates have (stabilizer groups with) *small* support:

Theorem

For any polynomial p, there is a k such that for all sufficiently large n, if C is a symmetric circuit on [n] of size at most p(n), then every gate in C has a support of size at most k.

The general form of the support theorem in (Anderson, D. 2017) gives bounds on the size of supports in *sub-exponential* circuits.

Alternating Supports

Groups with small support are big.

The converse is clearly false since $[S_n : A_n] = 2$, but A_n has no support of size less than n - 1.

In a sense, the alternating group is the *only* exception, due to a standard result from permutation group theory.

Theorem If n > 8, $1 \le k \le n/4$, and G is a subgroup of S_n with $[S_n : G] < \binom{n}{k}$, then there is a set $X \subseteq [n]$ with |X| < k such that $A_{(X)} \le G$. where $A_{(X)}$ denotes the group $\{\pi \in A_n : \pi(i) = i \text{ for all } i \in X\}$

Supports of Gates

Theorem If n > 8 and $1 \le k \le n/4$, and G is a subgroup of S_n with $[S_n : G] < {n \choose k}$, then there is a set $X \subseteq [n]$ with |X| < k such that $A_{(X)} \le G$.

If $(C_n)_{n \in \omega}$ is a family of *symmetric* circuits of size n^k , then for all sufficiently large n and gates g in C_n , there is a set $X \subseteq [n]$ with $|X| \leq k$ such that $A_{(X)} \leq \operatorname{Stab}(g)$.

It follows that if *any odd* permutation of [n] that fixes X pointwise, also fixes g, then $S_{(X)} \leq \operatorname{Stab}(g)$, so X is a support of g. where $S_{(X)}$ denotes the group $\{\pi \in S_n : \pi(i) = i \text{ for all } i \in X\}$

Supports of Gates

Some odd permutation of [n] that fixes X pointwise, also fixes g. (*)

We can prove, by induction on the depth of g in the circuit C_n that this must be the case.

It is clearly true for input gates $R(\overline{a})$, as any permutation that fixes \overline{a} fixes the gate.

Let g be a gate such that (*) is true for all gates that are inputs to g. Since g computes a symmetric Boolean function, and C_n is rigid, any $\pi \in S_n$ that fixes the inputs to g setwise, fixes g. Let H be the set of inputs to g. By induction hypothesis, they all have a support of size at most k

Supports of Gates

Some odd permutation of [n] that fixes X pointwise, also fixes g. (*) Let q be a gate such that (*) is true for all gates in H, but false for q

For any $i, j \in [n] \setminus X$, the permutation $(i \ j)$ moves g, so moves some $h \in H$.

$$[n] \setminus X \subseteq \bigcup_{h \in H} \operatorname{sp}(h)$$

We can then find $\frac{n-k}{k}$ elements of H with *pairwise disjoint* support. This gives us $\frac{n-k}{k}$ distinct permutations $(i \ j)$ which we can *independently* combine to show that the orbit of g has size at least $2^{(n-k)/k}$.

Support Theorem

In *polynomial size* symmetric circuits, all gates have (stabilizer groups with) *small* support:

Theorem

For any $0 < \epsilon < 1$, if C is a symmetric circuit over [n] of size s for large enough n and $s \le 2^{n^{1-\epsilon}}$. Then every gate g of C has a support of size at most $O(\frac{\log s}{\log n})$.

We can push this to exponential bounds: if $s = 2^{o(n)}$, then the family of circuits C_n has supports of size o(n).

We write sp(g) for the small support of g given by this theorem and note that it can be computed in polynomial time from a symmetric circuit C.

Translating Symmetric Circuits to Formulas

Given a polynomial-time function $n\mapsto C_n$ that generates symmetric circuits:

- 1. There are formulas of FP interpreted on ([n], <) that define the structure C_n .
- 2. We can also compute in polynomial time (and therefore in FP on ([n], <)) p(g) for each gate g.
- 3. For an input structure A and an assignment $\gamma : [n] \to A$ of the inputs of C_n to elements of A, whether g is made true depends only on $\gamma(\operatorname{sp}(g))$.
- 4. We define, by induction on the structure of C_n , the set of tuples $\Gamma(g) \subseteq \mathbb{A}^{\operatorname{sp}(g)}$ that represent assignments γ making g true.
- 5. This inductive definition can be turned into a formula (of FP for a Boolean circuit, of FPC for one with threshold gates.)

Circuits and Pebble Games

We can use *bijection games* and the *support theorem* to establish lower bounds for symmetric circuits.

The key is the following connection.

If *C* is a symmetric circuit on *n*-element structures such that every gate of *C* has a support of size at most *k*, and \mathbb{A} and \mathbb{B} are structures such that $\mathbb{A} \equiv^{C^{2k}} \mathbb{B}$ then:

C accepts \mathbb{A} if, and only if, *C* accepts \mathbb{B} .

This can be proved by showing that if C distinguishes A from B, then it provides a *winning strategy* for *Spoiler* in the 2k-pebble bijection game.

Proof Sketch

Show that if C accepts \mathbb{A} and rejects \mathbb{B} , then *Spoiler* has a winning strategy in the 2k-pebble bijection game played on \mathbb{A} and \mathbb{B} . The number of moves needed is at most kd, where d is the *depth* of C.

Spoiler fixes a bijection $\alpha : A \rightarrow [n]$.

Show by induction that, while playing the *bijection game Spoiler* can maintain a pointer to a gate g of C and the following invariants for the game position $(\overline{u}, \overline{v})$:

- $\alpha(\overline{u})$ includes the support of g.
- For any bijection $\beta: B \to [n]$ such that $\beta^{-1}\alpha(\overline{u}) = \overline{v}$:

 $C_g(\alpha(\mathbb{A})) \neq C_g(\beta(\mathbb{B})).$

Proof Sketch – 2

Base Case: If g is the output gate, by assumption $C_g(\alpha(\mathbb{A})) = 1$ and for any β , $C_g(\beta(\mathbb{B})) = 0$

Induction Step:

While keeping pebbles on the support of g, *Spoiler* moves the other k pebbles to the support of a *child* h of g. At each move, *Duplicator* plays a bijection $\gamma : A \to B$ such that $\gamma(\overline{u}) = \overline{v}$. Thus, $C_q(\alpha(\mathbb{A})) \neq C_q(\alpha \gamma^{-1}(\mathbb{B}))$, and there is an h for which

 $C_h(\alpha(\mathbb{A})) \neq C_h(\alpha \gamma^{-1}(\mathbb{B}))$

Circuits and Pebble Games

If *C* is a symmetric circuit on *n*-vertex graphs such that every gate of *C* has a support of size at most *k*, and \mathbb{A} and \mathbb{B} are graphs such that $\mathbb{A} \equiv^{C^{2k}} \mathbb{B}$ then:

C accepts \mathbb{A} if, and only if, C accepts \mathbb{B} .

As a consequence, if C is a class of structures of *counting width* $k : \mathbb{N} \to \mathbb{N}$, then any family of symmetric circuits accepting C has size $\Omega(n^k)$.

at least for $k \leq \frac{n}{\log n}$.