Symmetric Computation: Lecture 3

Anuj Dawar and Gregory Wilsenach

Department of Computer Science and Technology, University of Cambridge

ESSLLI, August 2021

Cai-Fürer-Immerman Graphs

Cai-Fürer-Immerman show that there is a polynomial-time graph property that is not in FPC by constructing a sequence of pairs of graphs G_k , $H_k(k \in \omega)$ such that:

- $G_k \equiv^{C^k} H_k$ for all k .
- There is a polynomial time decidable class of graphs that includes all G_k and excludes all H_k .

In particular, the first point shows that \equiv^{C^k} (for any fixed k) does not capture isomorphism everywhere

Constructing G_k and H_k

Given any graph G, we can define a graph X_G by replacing every edge with a pair of edges, and every vertex with a gadget.

The picture shows the gadget for a vertex v that is adjacent in G to vertices w_1, w_2 and w_3 . The vertex v^S is adjacent to $a_{vw_i} (i \in S)$ and $b_{vw_i} (i \not \in S)$ and there is one vertex for all even size S. The graph X_G is like X_G except that at one vertex v , we include v^S for *odd size* S .

Properties

If G is connected and has treewidth at least k , then:

- 1. $X_G \not\cong \tilde{X}_G$; and
- 2. $X_G \equiv^{C^k} \tilde{X}_G$.

(1) allows us to construct a polynomial time property separating X_G and X_G .

(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the existence of balanced separators in G . The characterisation in terms of treewidth is from (D., Richerby 07).

TreeWidth

The *treewidth* of a graph is a measure of how tree-like the graph is. A graph has treewidth k if it can be covered by subgraphs of at most $k + 1$ nodes in a tree-like fashion.

TreeWidth

Formal Definition:

For a graph $G = (V, E)$, a tree decomposition of G is a relation $D \subset V \times T$ with a tree T such that:

- for each $v \in V$, the set $\{t \mid (v, t) \in D\}$ forms a connected subtree of T : and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

We call $\beta(t) := \{v \mid (v, t) \in D\}$ the *bag* at t.

The *treewidth* of G is the least k such that there is a tree T and a tree-decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v, t) \in D\}| \leq k + 1.$

Cops and Robbers

A game played on an undirected graph $G = (V, E)$ between a player controlling k cops and another player in charge of a robber.

At any point, the cops are sitting on a set $X \subseteq V$ of the nodes and the robber on a node $r \in V$.

A move consists in the cop player removing some cops from $X' \subseteq X$ nodes and announcing a new position Y for them. The robber responds by moving along a path from r to some node s such that the path does not go through $X \setminus X'$.

The new position is $(X \setminus X') \cup Y$ and $s.$ If a cop and the robber are on the same node, the robber is caught and the game ends.

Strategies and Decompositions

Theorem (Seymour and Thomas 93):

There is a winning strategy for the *cop player* with k cops on a graph G if, and only if, the tree-width of G is at most $k - 1$.

It is not difficult to construct, from a tree decomposition of width k , a winning strategy for $k + 1$ cops.

Somewhat more involved to show that a winning strategy yields a decomposition.

Cops and Robbers on the Grid

If G is the $k \times k$ toroidal grid, than the *robber* has a winning strategy in the k -cops and robbers game played on G .

To show this, we note that for any set X of at most k vertices, the graph $G \setminus X$ contains a connected component with at least half the vertices of G.

If all vertices in X are in distinct rows then $G \setminus X$ is connected. Otherwise, $G \setminus X$ contains an entire row and in its connected component there are at least $k - 1$ vertices from at least $k/2$ columns.

Robber's strategy is to stay in the large component.

Cops, Robbers and Bijections

We use this to construct a winning strategy for Duplicator in the k-pebble bijection game on X_G and X_G .

- A bijection $h: X_G \to X_G$ is good bar v if it is an isomorphism everywhere except at the vertices $v^S.$
- If h is good bar v and there is a path from v to u , then there is a bijection h' that is good bar u such that h and h' differ only at vertices corresponding to the path from v to u .
- Duplicator plays bijections that are good bar v , where v is the robber position in G when the cop position is given by the currently pebbled elements.

Counting Width

For any class of structures C, we define its counting width $\nu_c : \mathbb{N} \to \mathbb{N}$ so that

 $\nu_c(n)$ is the least k such that C restricted to structures with at most n elements is closed under \equiv^{C^k} .

Every class in FPC has counting width bounded by a constant.

The CFI construction based on *grids* gives a class of graphs in P that has The Cr r construction b
counting width $\Omega(\sqrt{n})$.

This can be improved to $\Omega(n)$ by taking, instead of grids, expander graphs.

Interpretations

Given two relational signatures σ and τ , where $\tau = \langle R_1, \ldots, R_r \rangle$, and arity of R_i is n_i

A first-order interpretation of τ in σ is a sequence:

 $\langle \pi_U, \pi_1, \ldots, \pi_r \rangle$

of first-order σ -formulas, such that, for some d:

- the free variables of π_U are among x_1, \ldots, x_d ,
- and the free variables of π_i (for each i) are among $x_1, \ldots, x_{d \cdot n_i}$.

 d is the dimension of the interpretation.

Interpretations II

An interpretation of τ in σ maps σ -structures to τ -structures.

If $\mathbb A$ is a σ -structure with universe A, then $\pi(\mathbb{A})$ is a structure (B, R_1, \ldots, R_r) with

- \bullet $B \subseteq A^d$ is the relation defined by $\pi_U.$
- for each i, R_i is the relation on B defined by π_i .

An FO reduction of a class of structures $\mathcal C$ to a class $\mathcal D$ is a single FO interpretation θ such that $\mathbb{A} \in \mathcal{C}$ if, and only if, $\theta(\mathbb{A}) \in \mathcal{D}$. We write $\mathcal{C} \leq_{\mathsf{FO}} \mathcal{D}$.

FPC-Reductions

More generally, we can defined reductions in any logic, e.g. FPC.

If $C \leq_{\text{FPC}} D$ then

$$
\nu_{\mathcal{D}} = \Omega(\nu_{\mathcal{C}}^{1/d}).
$$

If the reduction takes C -instances to D -instances of *linear size*, then

 $\nu_{\mathcal{D}} = \Omega(\nu_{\mathcal{C}}).$

By means of reductions, we can estalish 3-Sat, XOR-Sat, 3-Colourability, Hamiltonicity all have counting width $\Omega(n)$.

Relational Machines

Input: A relational database Store: relational and numerical registers

Operations: join, projection, complementation, counting

Properites expressible in FPC are exactly those decidable by such a machine in polynomial time.

Dawar and Wilsenach August 2021

Relational Machines - Formally

Fix a relational vocabulary $\sigma = (R_1, \ldots, R_m)$.

The relational machine M has:

- fixed relational registers: R_1, \ldots, R_m ;
- a fixed number of *variable* relational registers P_1, \ldots, P_s each with fixed arity; and
- a fixed number of *numerical registers*: c_1, \ldots, c_t .

Relational Machines - Formally

The program of M is composed of atomic actions

 $P_i := R_j, P_i := P_j \cup P_k, P_i := \pi_{a_1,...,a_k} P_j,$ $P_i := P_j \Join_{a_1,...,a_k} P_k; P_i := P_j.$ $c_i := c_i + 1;$ $c_i := \#P_j$

and control commands:

if $c_i = 0$ then p else $c_i := c_i - 1$ while $c_1 \neq 0$ p

Exercise: Show that a class of relational structures is accepted by a polynomial-time relational machine if, and only if, it is definable in FPC.

Circuits

A circuit C is a *directed acyclic graph* with:

- source nodes (called *inputs*) labelled x_1, \ldots, x_n ;
- any other node (called a gate) with k incoming edges is labelled by a Boolean function $g: \{0,1\}^k \rightarrow \{0,1\}$ from some fixed basis (e.g. AND/OR/NOT);
- some gates designated as *outputs*, y_1, \ldots, y_m .

 C computes a function $f_C: \{0,1\}^n \rightarrow \{0,1\}^m$ as expected.

Circuit Complexity

A *language* $L \subseteq \{0,1\}^*$ can be described by a family of *Boolean* functions:

 $(f_n)_{n \in \omega} : \{0,1\}^n \to \{0,1\}.$

Each f_n may be given by a *circuit* C_n made up of AND/OR/NOT gates, with n inputs and one output.

If the size of C_n is bounded by a polynomial in n, the language L is in the class $P/poly$.

If, in addition, the function $n \mapsto C_n$ is computable in polynomial time, L is in P.

Circuit Complexity Classes

For the definition of $P/poly$ and P, it makes no difference if the circuits only use $\{AND, OR, NOT\}$ or a richer basis with *ubounded fan-in*; threshold; or counting gates.

However,

 $AC₀$ — languages accepted by bounded-depth, polynomial-size families of circuits with unbounded fan-in AND and OR gates and NOT gates;

and

 $TC₀$ — languages accepted by bounded-depth, polynomial-size families of circuits with unbounded fan-in AND and OR and threshold gates and NOT gates;

are different.

A *threshold gate* $\textsf{Th}_t^k:\{0,1\}^k\to\{0,1\}$ evaluates to 1 iff at least t of the inputs are 1.

Invariant Circuits

Instead of a language $L\subseteq \{0,1\}^*$, consider a class $\mathcal C$ of directed graphs. This can be given by a family of Boolean functions:

$$
(f_n)_{n \in \omega} : \{0,1\}^{n^2} \to \{0,1\}.
$$

A graph on vertices $\{1,\ldots,n\}$ has n^2 potential edges. So the graph can be treated as a string in $\{0,1\}^{n^2}.$

Since C is closed under isomorphisms, each function f_n is invariant under the natural action of S_n on $n^2.$

We call such functions graph invariant.

Symmetric Circuits

More generally, for any *relational vocabulary* τ , let

$$
\tau(n) = \sum_{R \in \tau} n^{\text{arity}(R)}
$$

We take an encoding of n -element τ -structures as strings in $\{0,1\}^{\tau(n)}$ and this determines an action of S_n on such strings.

A function $f:\{0,1\}^{\tau(n)}\rightarrow \{0,1\}$ is τ -*invariant* if it is invariant under this action.

We say that a circuit C with inputs labelled by $\tau(n)$ is *symmetric* if every $\pi \in S_n$ acting on the inputs of C can be extended to an *automorphism* of C.

Every symmetric circuit computes an invariant function, but the converse is false.

Logic and Circuits

Any formula of φ first-order logic translates into a uniform family of circuits C_n

For each subformula $\psi(\overline{x})$ and each assignment \overline{a} of values to the free variables, we have a gate. Existential quantifiers translate to big disjunctions, etc.

The circuit C_n is:

- of constant depth (given by the depth of φ);
- \bullet of size at mose $c\cdot n^k$ where c is the number of subformulas of φ and k is the maximum number of free variables in any subformula of φ .
- symmetric by the action of $\pi \in S_n$ that takes $\psi[\overline{a}]$ to $\psi[\pi(\overline{a})]$.

FP and Circuits

For every sentence φ of FP there is a k such that for every n, there is a formula φ_n of L^k that is equivalent to φ on all graphs with at most n vertices.

The formula φ_n has

- depth n^c for some constant c ;
- at most k free variables in each sub-formula for some constant k .

It follows that every graph property definable in FP is given by a family of polynomial-size, symmetric circuits.

FPC and Circuits

For every sentence φ of FP there is a k such that for every n, there is a formula φ_n of C^k that is equivalent to φ on all graphs with at most n vertices.

The formula φ_n has

- depth n^c for some constant c ;
- at most k free variables in each sub-formula for some constant k .

It follows that every graph property definable in FP is given by a family of *polynomial-size*, *symmetric* circuits in a basis with *threshold gates*.

Note: we could also alternatively take a basis with *majority* gates.

Relating Circuits and Logic

The following are established in (Anderson, D. 2017):

Theorem

A class of graphs is accepted by a P -uniform, polynomial-size, symmetric family of Boolean circuits if, and only if, it is definable by an FP formula interpreted in $G \oplus ([n], <)$.

Theorem

A class of graphs is accepted by a P -uniform, polynomial-size, symmetric family of threshold circuits if, and only if, it is definable in FPC.

Some Consequences

We get a natural and purely circuit-based characterisation of FPC definability.

Inexpressibility results for FP and FPC yield lower bound results against natural circuit classes.

- There is no polynomial-size family of symmetric Boolean circuits deciding if an n vertex graph has an even number of edges.
- Polynomial-size families of uniform symmetric threshold circuits are more powerful than Boolean circuits.
- Invariant circuits *cannot* be translated into equivalent symmetric threshold circuits, with only polynomial blow-up.

Automorphisms of Symmetric Circuits

For a symmetric circuit C_n we can assume w.l.o.g. that the automorphism group is the symmetric group S_n acting in the natural way.

That is:

- Each $\pi \in S_n$ gives rise to a *non-trivial* automorphism of C_n (otherwise C_n would compute a constant function).
- There are no *non-trivial* automorphisms of C_n that fix all the inputs (otherwise there is redundancy in C_n that can be eliminated).

We call a circuit satisfying these conditions *rigid*.

By abuse of notation, we use $\pi \in S_n$ both for permutations of $[n]$ and automorphisms of C_n .

Stabilizers

For a gate g in C_n , $\text{Stab}(g)$ denotes the *stabilizer group of g*, i.e. the subgroup of S_n consisting:

$$
Stab(g) = \{ \pi \in S_n \mid \pi(g) = g \}.
$$

The *orbit* of g is the set of gates $\{h \mid \pi(g) = h \text{ for some } \pi \in S_n\}$

By the *orbit-stabilizer* theorem, there is one gate in the orbit of g for each co-set of $\text{Stab}(q)$ in S_n . Thus the size of the *orbit* of g in C_n is $[S_n : \text{Stab}(g)] = \frac{n!}{|\text{Stab}(g)|}$. So, an upper bound on $\text{Stab}(g)$ gives us a lower bound on the orbit of g. Conversely, knowing that the orbit of q is at most polynomial in n tells us that $\text{Stab}(g)$ is *big*.

Supports

For a group $G \subseteq S_n$, we say that a set $X \subseteq [n]$ is a *support* of G if For every $\pi \in S_n$, if $\pi(x) = x$ for all $x \in X$, then $\pi \in G$.

In other words, G contains all permutations of $[n] \setminus X$. So, if $|X|=k$, $[S_n:G]$ is at most $\frac{n!}{(n-k)!}\leq n^k$.

Groups with small support are *big*.

The converse is clearly false since $|S_n: A_n|=2$, but A_n has no support of size less than $n - 1$.

Note: For the family of circuits $(C_n)_{n\in\omega}$ obtained from an FPC formula there is a constant k such that all gates in each C_n have a support of size at most k .

Support Theorem

In *polynomial size* symmetric circuits, all gates have (stabilizer groups with) *small* support:

Theorem

For any polynomial p, there is a k such that for all sufficiently large n, if C is a symmetric circuit on $[n]$ of size at most $p(n)$, then every gate in C has a support of size at most k .

The general form of the support theorem in (Anderson, D. 2017) gives bounds on the size of supports in *sub-exponential* circuits.

Alternating Supports

Groups with small support are *big*.

The converse is clearly false since $[S_n : A_n] = 2$, but A_n has no support of size less than $n - 1$.

In a sense, the alternating group is the *only* exception, due to a standard result from permutation group theory.

Theorem If $n > 8$, $1 \leq k \leq n/4$, and G is a subgroup of S_n with $[S_n : G] < \binom{n}{k}$, then there is a set $X \subseteq [n]$ with $|X| < k$ such that $A_{(X)} \leq G$. where $A_{(X)}$ denotes the group $\{\pi \in A_n : \pi(i) = i \text{ for all } i \in X\}$

Supports of Gates

Theorem If $n > 8$ and $1 \leq k \leq n/4$, and G is a subgroup of S_n with $[S_n:G] < {n \choose k}$, then there is a set $X \subseteq [n]$ with $|X| < k$ such that $A_{(X)} \leq G$.

If $(C_n)_{n\in\omega}$ is a family of symmetric circuits of size n^k , then for all sufficiently large n and gates q in C_n , there is a set $X \subseteq [n]$ with $|X| \leq k$ such that $A_{(X)} \leq$ Stab (g) .

It follows that if any odd permutation of $[n]$ that fixes X pointwise, also fixes g, then $S_{(X)} \leq$ Stab (g) , so X is a support of g. where $S_{(X)}$ denotes the group $\{\pi \in S_n : \pi(i) = i \text{ for all } i \in X\}$

Supports of Gates

Some odd permutation of $[n]$ that fixes X pointwise, also fixes q. $(*)$

We can prove, by induction on the depth of g in the circuit C_n that this must be the case.

It is clearly true for input gates $R(\bar{a})$, as any permutation that fixes \bar{a} fixes the gate.

Let q be a gate such that $(*)$ is true for all gates that are inputs to q. Since q computes a symmetric Boolean function, and C_n is rigid, any $\pi \in S_n$ that fixes the inputs to q setwise, fixes q. Let H be the set of inputs to q . By induction hypothesis, they all have a support of size at most k

Supports of Gates

Some odd permutation of $[n]$ that fixes X pointwise, also fixes q. $(*)$ Let q be a gate such that $(*)$ is true for all gates in H, but false for q

For any $i, j \in [n] \setminus X$, the permutation (i, j) moves g , so moves some $h \in H$.

$$
[n] \setminus X \subseteq \bigcup_{h \in H} \mathrm{sp}(h)
$$

We can then find $\frac{n-k}{k}$ elements of H with $\boldsymbol{pairwise}$ disjoint support. This gives us $\frac{n-k}{k}$ distinct permutations $(i\ j)$ which we can independently combine to show that the orbit of g has size at least $2^{(n-k)/k}.$

Support Theorem

In *polynomial size* symmetric circuits, all gates have (stabilizer groups with) small support:

Theorem

For any $0 < \epsilon < 1$), if C is a symmetric circuit over $[n]$ of size s for large enough n and $s \leq 2^{n^{1-\epsilon}}.$ Then every gate g of C has a support of size at most $O(\frac{\log s}{\log n}).$

We can push this to exponential bounds: if $s=2^{o(n)}$, then the family of circuits C_n has supports of size $o(n)$.

We write $\text{sp}(q)$ for the small support of g given by this theorem and note that it can be computed in polynomial time from a symmetric circuit C .

Translating Symmetric Circuits to Formulas

Given a polynomial-time function $n \mapsto C_n$ that generates symmetric circuits:

- 1. There are formulas of FP interpreted on $([n], <)$ that define the structure C_n .
- 2. We can also compute in polynomial time (and therefore in FP on $([n], <)$ sp (g) for each gate g.
- 3. For an input structure A and an assignment $\gamma : [n] \to A$ of the inputs of C_n to elements of $\mathbb A$, whether q is made true depends only on $\gamma(\text{sp}(g))$.
- 4. We define, by induction on the structure of C_n , the set of tuples $\Gamma(g)\subseteq \mathbb{A}^{\mathsf{sp} (g)}$ that represent assignments γ making g true.
- 5. This inductive definition can be turned into a formula (of FP for a Boolean circuit, of FPC for one with threshold gates.)

Circuits and Pebble Games

We can use *bijection games* and the *support theorem* to establish lower bounds for symmetric circuits.

The key is the following connection.

If C is a symmetric circuit on *n*-element structures such that every gate of C has a support of size at most k, and A and B are structures such that $\mathbb{A}\equiv^{C^{2k}}\mathbb{B}$ then:

C accepts A if, and only if, C accepts B .

This can be proved by showing that if C distinguishes A from $\mathbb B$, then it provides a winning strategy for Spoiler in the $2k$ -pebble bijection game.

Proof Sketch

Show that if C accepts $\mathbb A$ and rejects $\mathbb B$, then *Spoiler* has a winning strategy in the $2k$ -pebble bijection game played on $\mathbb A$ and $\mathbb B$. The number of moves needed is at most kd , where d is the depth of C.

Spoiler fixes a bijection $\alpha : A \rightarrow [n]$.

Show by induction that, while playing the *bijection game Spoiler* can maintain a pointer to a gate q of C and the following invariants for the game position $(\overline{u}, \overline{v})$:

- $\alpha(\overline{u})$ includes the support of q.
- For any bijection $\beta: B \to [n]$ such that $\beta^{-1}\alpha(\overline{u}) = \overline{v}$:

 $C_a(\alpha(\mathbb{A})) \neq C_a(\beta(\mathbb{B}))$.

Proof Sketch – 2

Base Case: If g is the output gate, by assumption $C_q(\alpha(\mathbb{A})) = 1$ and for any β , $C_a(\beta(\mathbb{B})) = 0$

Induction Step:

While keeping pebbles on the support of q, Spoiler moves the other k pebbles to the support of a *child h* of q . At each move, *Duplicator* plays a bijection $\gamma : A \rightarrow B$ such that $\gamma(\overline{u}) = \overline{v}.$ Thus, $C_g(\alpha(\mathbb{A})) \neq C_g(\alpha \gamma^{-1}(\mathbb{B}))$, and there is an h for which

 $C_h(\alpha(\mathbb{A})) \neq C_h(\alpha \gamma^{-1}(\mathbb{B}))$

Circuits and Pebble Games

If C is a symmetric circuit on n-vertex graphs such that every gate of C has a support of size at most k, and A and B are graphs such that $\mathbb{A}\equiv^{C^{2k}}\mathbb{B}$ then:

C accepts A if, and only if, C accepts B .

As a consequence, if $\mathcal C$ is a class of structures of counting width $k : \mathbb{N} \to \mathbb{N}$, then any family of symmetric circuits accepting C has size $\Omega(n^k)$.

at least for $k \leq \frac{n}{\log n}$.