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Cai-Fürer-Immerman Graphs

Cai-Fürer-Immerman show that there is a polynomial-time graph property
that is not in FPC by constructing a sequence of pairs of graphs
Gk, Hk(k ∈ ω) such that:

• Gk ≡C
k

Hk for all k.

• There is a polynomial time decidable class of graphs that includes all
Gk and excludes all Hk.

In particular, the first point shows that ≡Ck (for any fixed k) does not
capture isomorphism everywhere

Dawar and Wilsenach August 2021



Constructing Gk and Hk

Given any graph G, we can define a graph XG by replacing every edge
with a pair of edges, and every vertex with a gadget.

The picture shows the gadget for
a vertex v that is adjacent in G to
vertices w1, w2 and w3.
The vertex vS is adjacent to
avwi(i ∈ S) and bvwi(i 6∈ S) and
there is one vertex for all even size
S.
The graph X̃G is like XG except
that at one vertex v, we include
vS for odd size S.
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Properties

If G is connected and has treewidth at least k, then:

1. XG 6∼= X̃G; and

2. XG ≡C
k

X̃G.

(1) allows us to construct a polynomial time property separating XG and
X̃G.
(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the exis-
tence of balanced separators in G. The characterisation in terms
of treewidth is from (D., Richerby 07).
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TreeWidth

The treewidth of a graph is a measure of how tree-like the graph is.
A graph has treewidth k if it can be covered by subgraphs of at most
k + 1 nodes in a tree-like fashion.
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TreeWidth

Formal Definition:
For a graph G = (V,E), a tree decomposition of G is a relation
D ⊂ V × T with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected subtree of
T ; and

• for each edge (u, v) ∈ E, there is a t ∈ T such that (u, t), (v, t) ∈ D.

We call β(t) := {v | (v, t) ∈ D} the bag at t.

The treewidth of G is the least k such that there is a tree T and a
tree-decomposition D ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.
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Cops and Robbers

A game played on an undirected graph G = (V,E) between a
player controlling k cops and another player in charge of a robber.

At any point, the cops are sitting on a set X ⊆ V of the nodes and the
robber on a node r ∈ V .
A move consists in the cop player removing some cops from X ′ ⊆ X
nodes and announcing a new position Y for them. The robber responds
by moving along a path from r to some node s such that the path does
not go through X \X ′.
The new position is (X \X ′) ∪ Y and s. If a cop and the robber are on
the same node, the robber is caught and the game ends.
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Strategies and Decompositions

Theorem (Seymour and Thomas 93):
There is a winning strategy for the cop player with k cops on a graph G
if, and only if, the tree-width of G is at most k − 1.

It is not difficult to construct, from a tree decomposition of width k, a
winning strategy for k + 1 cops.

Somewhat more involved to show that a winning strategy yields a
decomposition.
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Cops and Robbers on the Grid

If G is the k × k toroidal grid, than the robber has a winning strategy in
the k-cops and robbers game played on G.

To show this, we note that for any set X of at most k vertices, the graph
G \X contains a connected component with at least half the vertices of
G.

If all vertices in X are in distinct rows then G \X is connected.
Otherwise, G \X contains an entire row and in its connected component
there are at least k − 1 vertices from at least k/2 columns.

Robber’s strategy is to stay in the large component.
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Cops, Robbers and Bijections

We use this to construct a winning strategy for Duplicator in the
k-pebble bijection game on XG and X̃G.

• A bijection h : XG → X̃G is good bar v if it is an isomorphism
everywhere except at the vertices vS .

• If h is good bar v and there is a path from v to u, then there is a
bijection h′ that is good bar u such that h and h′ differ only at
vertices corresponding to the path from v to u.

• Duplicator plays bijections that are good bar v, where v is the
robber position in G when the cop position is given by the currently
pebbled elements.
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Counting Width

For any class of structures C, we define its counting width νC : N→ N so
that

νC(n) is the least k such that C restricted to structures with at

most n elements is closed under ≡Ck .

Every class in FPC has counting width bounded by a constant.

The CFI construction based on grids gives a class of graphs in P that has
counting width Ω(

√
n).

This can be improved to Ω(n) by taking, instead of grids, expander
graphs.
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Interpretations

Given two relational signatures σ and τ , where τ = 〈R1, . . . , Rr〉, and
arity of Ri is ni

A first-order interpretation of τ in σ is a sequence:

〈πU , π1, . . . , πr〉

of first-order σ-formulas, such that, for some d:

• the free variables of πU are among x1, . . . , xd,

• and the free variables of πi (for each i) are among x1, . . . , xd·ni .

d is the dimension of the interpretation.
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Interpretations II

An interpretation of τ in σ maps σ-structures to τ -structures.

If A is a σ-structure with universe A, then
π(A) is a structure (B,R1, . . . , Rr) with

• B ⊆ Ad is the relation defined by πU .

• for each i, Ri is the relation on B defined by πi.

An FO reduction of a class of structures C to a class D is a single FO
interpretation θ such that A ∈ C if, and only if, θ(A) ∈ D.
We write C ≤FO D.
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FPC-Reductions

More generally, we can defined reductions in any logic, e.g. FPC.

If C ≤FPC D then
νD = Ω(ν

1/d
C ).

If the reduction takes C-instances to D-instances of linear size, then

νD = Ω(νC).

By means of reductions, we can estalish 3-Sat, XOR-Sat, 3-Colourability,
Hamiltonicity all have counting width Ω(n).
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Relational Machines

Input: A relational database

Store: relational and numerical
registers

Operations: join, projection, com-
plementation, counting

Properites expressible in FPC are exactly those decidable by such a
machine in polynomial time.
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Relational Machines - Formally

Fix a relational vocabulary σ = (R1, . . . , Rm).

The relational machine M has:

• fixed relational registers: R1, . . . , Rm;

• a fixed number of variable relational registers P1, . . . , Ps each with
fixed arity; and

• a fixed number of numerical registers: c1, . . . , ct.
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Relational Machines - Formally

The program of M is composed of atomic actions

Pi := Rj ; Pi := Pj ∪ Pk; Pi := πa1,...,akPj ;
Pi := Pj ./a1,...,ak Pk; Pi := Pj .
ci := ci + 1;
ci := #Pj

and control commands:
if ci = 0 then p else ci := ci − 1
while c1 6= 0 p

Exercise: Show that a class of relational structures is accepted by a
polynomial-time relational machine if, and only if, it is definable in FPC.
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Circuits

A circuit C is a directed acyclic graph with:

• source nodes (called inputs) labelled x1, . . . , xn;

• any other node (called a gate) with k incoming edges is labelled by a
Boolean function g : {0, 1}k → {0, 1} from some fixed basis (e.g.
AND/OR/NOT);

• some gates designated as outputs, y1, . . . , ym.

C computes a function fC : {0, 1}n → {0, 1}m as expected.
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Circuit Complexity

A language L ⊆ {0, 1}∗ can be described by a family of Boolean
functions:

(fn)n∈ω : {0, 1}n → {0, 1}.

Each fn may be given by a circuit Cn made up of AND/OR/NOT
gates, with n inputs and one output.

If the size of Cn is bounded by a polynomial in n, the language L is in
the class P/poly.

If, in addition, the function n 7→ Cn is computable in polynomial time, L
is in P.
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Circuit Complexity Classes

For the definition of P/poly and P, it makes no difference if the circuits
only use {AND,OR,NOT} or a richer basis with ubounded fan-in;
threshold; or counting gates.

However,
AC0 — languages accepted by bounded-depth, polynomial-size
families of circuits with unbounded fan-in AND and OR gates
and NOT gates;

and
TC0 — languages accepted by bounded-depth, polynomial-size
families of circuits with unbounded fan-in AND and OR and
threshold gates and NOT gates;

are different.

A threshold gate Thkt : {0, 1}k → {0, 1} evaluates to 1 iff at least t of
the inputs are 1.
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Invariant Circuits

Instead of a language L ⊆ {0, 1}∗ , consider a class C of directed graphs.
This can be given by a family of Boolean functions:

(fn)n∈ω : {0, 1}n
2

→ {0, 1}.

A graph on vertices {1, . . . , n} has n2 potential edges.

So the graph can be treated as a string in {0, 1}n2

.

Since C is closed under isomorphisms, each function fn is invariant under
the natural action of Sn on n2.

We call such functions graph invariant.
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Symmetric Circuits

More generally, for any relational vocabulary τ , let

τ(n) =
∑
R∈τ

narity(R)

We take an encoding of n-element τ -structures as strings in {0, 1}τ(n)
and this determines an action of Sn on such strings.

A function f : {0, 1}τ(n) → {0, 1} is τ -invariant if it is invariant under
this action.

We say that a circuit C with inputs labelled by τ(n) is symmetric if every
π ∈ Sn acting on the inputs of C can be extended to an automorphism
of C.

Every symmetric circuit computes an invariant function, but the converse
is false.
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Logic and Circuits

Any formula of ϕ first-order logic translates into a uniform family of
circuits Cn

For each subformula ψ(x) and each assignment a of values to
the free variables, we have a gate.
Existential quantifiers translate to big disjunctions, etc.

The circuit Cn is:

• of constant depth (given by the depth of ϕ);

• of size at mose c · nk where c is the number of subformulas of ϕ and
k is the maximum number of free variables in any subformula of ϕ.

• symmetric by the action of π ∈ Sn that takes ψ[a] to ψ[π(a)].
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FP and Circuits

For every sentence ϕ of FP there is a k such that for every n, there is a
formula ϕn of Lk that is equivalent to ϕ on all graphs with at most n
vertices.

The formula ϕn has

• depth nc for some constant c;

• at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family
of polynomial-size, symmetric circuits.
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FPC and Circuits

For every sentence ϕ of FP there is a k such that for every n, there is a
formula ϕn of Ck that is equivalent to ϕ on all graphs with at most n
vertices.

The formula ϕn has

• depth nc for some constant c;

• at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family
of polynomial-size, symmetric circuits in a basis with threshold gates.

Note: we could also alternatively take a basis with majority gates.
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Relating Circuits and Logic

The following are established in (Anderson, D. 2017):

Theorem
A class of graphs is accepted by a P-uniform, polynomial-size, symmetric
family of Boolean circuits if, and only if, it is definable by an FP formula
interpreted in G ] ([n], <).

Theorem
A class of graphs is accepted by a P-uniform, polynomial-size, symmetric
family of threshold circuits if, and only if, it is definable in FPC.
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Some Consequences

We get a natural and purely circuit-based characterisation of FPC
definability.

Inexpressibility results for FP and FPC yield lower bound results against
natural circuit classes.

• There is no polynomial-size family of symmetric Boolean circuits
deciding if an n vertex graph has an even number of edges.

• Polynomial-size families of uniform symmetric threshold circuits are
more powerful than Boolean circuits.

• Invariant circuits cannot be translated into equivalent symmetric
threshold circuits, with only polynomial blow-up.
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Automorphisms of Symmetric Circuits

For a symmetric circuit Cn we can assume w.l.o.g. that the
automorphism group is the symmetric group Sn acting in the natural way.

That is:

• Each π ∈ Sn gives rise to a non-trivial automorphism of Cn
(otherwise Cn would compute a constant function).

• There are no non-trivial automorphisms of Cn that fix all the inputs
(otherwise there is redundancy in Cn that can be eliminated).

We call a circuit satisfying these conditions rigid.

By abuse of notation, we use π ∈ Sn both for permutations of [n] and
automorphisms of Cn.
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Stabilizers

For a gate g in Cn, Stab(g) denotes the stabilizer group of g, i.e. the
subgroup of Sn consisting:

Stab(g) = {π ∈ Sn | π(g) = g}.

The orbit of g is the set of gates {h | π(g) = h for some π ∈ Sn}

By the orbit-stabilizer theorem, there is one gate in the orbit of g for
each co-set of Stab(g) in Sn.
Thus the size of the orbit of g in Cn is [Sn : Stab(g)] = n!

|Stab(g)| .

So, an upper bound on Stab(g) gives us a lower bound on the orbit of g.

Conversely, knowing that the orbit of g is at most polynomial in n tells us
that Stab(g) is big.
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Supports

For a group G ⊆ Sn, we say that a set X ⊆ [n] is a support of G if

For every π ∈ Sn, if π(x) = x for all x ∈ X, then π ∈ G.

In other words, G contains all permutations of [n] \X.

So, if |X| = k, [Sn : G] is at most n!
(n−k)! ≤ n

k.

Groups with small support are big.

The converse is clearly false since [Sn : An] = 2, but An has no support
of size less than n− 1.

Note: For the family of circuits (Cn)n∈ω obtained from an FPC formula
there is a constant k such that all gates in each Cn have a support of
size at most k.

Dawar and Wilsenach August 2021



Support Theorem

In polynomial size symmetric circuits, all gates have (stabilizer groups
with) small support:

Theorem
For any polynomial p, there is a k such that for all sufficiently large n, if
C is a symmetric circuit on [n] of size at most p(n), then every gate in C
has a support of size at most k.

The general form of the support theorem in (Anderson, D. 2017) gives
bounds on the size of supports in sub-exponential circuits.
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Alternating Supports

Groups with small support are big.

The converse is clearly false since [Sn : An] = 2, but An has no support
of size less than n− 1.

In a sense, the alternating group is the only exception, due to a standard
result from permutation group theory.

Theorem
If n > 8, 1 ≤ k ≤ n/4, and G is a subgroup of Sn with [Sn : G] <

(
n
k

)
,

then there is a set X ⊆ [n] with |X| < k such that A(X) ≤ G.

where A(X) denotes the group {π ∈ An : π(i) = i for all i ∈ X}
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Supports of Gates

Theorem
If n > 8 and 1 ≤ k ≤ n/4, and G is a subgroup of Sn with
[Sn : G] <

(
n
k

)
, then there is a set X ⊆ [n] with |X| < k such that

A(X) ≤ G.

If (Cn)n∈ω is a family of symmetric circuits of size nk, then for all
sufficiently large n and gates g in Cn, there is a set X ⊆ [n] with
|X| ≤ k such that A(X) ≤ Stab(g).

It follows that if any odd permutation of [n] that fixes X pointwise, also
fixes g, then S(X) ≤ Stab(g), so X is a support of g.

where S(X) denotes the group {π ∈ Sn : π(i) = i for all i ∈ X}
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Supports of Gates

Some odd permutation of [n] that fixes X pointwise, also fixes g. (∗)

We can prove, by induction on the depth of g in the circuit Cn that this
must be the case.

It is clearly true for input gates R(a), as any permutation that fixes a
fixes the gate.

Let g be a gate such that (∗) is true for all gates that are inputs to g.

Since g computes a symmetric Boolean function, and Cn is rigid, any
π ∈ Sn that fixes the inputs to g setwise, fixes g.
Let H be the set of inputs to g. By induction hypothesis, they all have a
support of size at most k
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Supports of Gates

Some odd permutation of [n] that fixes X pointwise, also fixes g. (∗)

Let g be a gate such that (∗) is true for all gates in H, but false for g

For any i, j ∈ [n] \X, the permutation (i j) moves g, so moves some
h ∈ H.

[n] \X ⊆
⋃
h∈H

sp(h)

We can then find n−k
k elements of H with pairwise disjoint support.

This gives us n−k
k distinct permutations (i j) which we can independently

combine to show that the orbit of g has size at least 2(n−k)/k.
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Support Theorem

In polynomial size symmetric circuits, all gates have (stabilizer groups
with) small support:

Theorem
For any 0 < ε < 1), if C is a symmetric circuit over [n] of size s for large

enough n and s ≤ 2n
1−ε

. Then every gate g of C has a support of size at
most O( log s

logn ).

We can push this to exponential bounds: if s = 2o(n), then the family of
circuits Cn has supports of size o(n).

We write sp(g) for the small support of g given by this theorem and note
that it can be computed in polynomial time from a symmetric circuit C.
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Translating Symmetric Circuits to Formulas

Given a polynomial-time function n 7→ Cn that generates symmetric
circuits:

1. There are formulas of FP interpreted on ([n], <) that define the
structure Cn.

2. We can also compute in polynomial time (and therefore in FP on
([n], <)) sp(g) for each gate g.

3. For an input structure A and an assignment γ : [n]→ A of the
inputs of Cn to elements of A, whether g is made true depends only
on γ(sp(g)).

4. We define, by induction on the structure of Cn, the set of tuples
Γ(g) ⊆ Asp(g) that represent assignments γ making g true.

5. This inductive definition can be turned into a formula (of FP for a
Boolean circuit, of FPC for one with threshold gates.)
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Circuits and Pebble Games

We can use bijection games and the support theorem to establish lower
bounds for symmetric circuits.

The key is the following connection.

If C is a symmetric circuit on n-element structures such that
every gate of C has a support of size at most k, and A and B
are structures such that A ≡C2k B then:

C accepts A if, and only if, C accepts B.

This can be proved by showing that if C distinguishes A from B, then it
provides a winning strategy for Spoiler in the 2k-pebble bijection game.
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Proof Sketch

Show that if C accepts A and rejects B, then Spoiler has a winning
strategy in the 2k-pebble bijection game played on A and B. The
number of moves needed is at most kd, where d is the depth of C.

Spoiler fixes a bijection α : A→ [n].

Show by induction that, while playing the bijection game Spoiler can
maintain a pointer to a gate g of C and the following invariants for the
game position (u, v):

• α(u) includes the support of g.

• For any bijection β : B → [n] such that β−1α(u) = v:

Cg(α(A)) 6= Cg(β(B)).
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Proof Sketch – 2

Base Case:
If g is the output gate, by assumption Cg(α(A)) = 1 and for any β,
Cg(β(B)) = 0

Induction Step:
While keeping pebbles on the support of g, Spoiler moves the other k
pebbles to the support of a child h of g.
At each move, Duplicator plays a bijection γ : A→ B such that
γ(u) = v.
Thus, Cg(α(A)) 6= Cg(αγ

−1(B)), and there is an h for which

Ch(α(A)) 6= Ch(αγ−1(B))
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Circuits and Pebble Games

If C is a symmetric circuit on n-vertex graphs such that every
gate of C has a support of size at most k, and A and B are

graphs such that A ≡C2k B then:

C accepts A if, and only if, C accepts B.

As a consequence, if C is a class of structures of counting width
k : N→ N, then any family of symmetric circuits accepting C has size
Ω(nk).

at least for k ≤ n
logn

.
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