Symmetric Computation: Lecture 2

Anuj Dawar and Gregory Wilsenach

Department of Computer Science and Technology, University of Cambridge

ESSLLI, August 2021

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational Complexity.

Computational Complexity

- Measure use of resources (space, time, etc.) on a machine model of computation;
- Complexity of a language—i.e. a set of strings.

Descriptive Complexity

- Complexity of a class of structures—e.g. a collection of graphs.
- Measure the complexity of describing the collection in a formal logic, using resources such as variables, quantifiers, higher-order operators, etc.

There is a fascinating interplay between the views.

Fagin's Theorem

Theorem (Fagin)

A class C of finite structures is definable by a sentence of *existential* second-order logic if, and only if, it is decidable by a nondeterminisitic machine running in polynomial time.

 $ESO = NP$

Fagin's Theorem

If φ is $\exists R_1 \cdots \exists R_m \theta$ for a first-order θ .

To decide $A \models \varphi$, guess an interpretation for the relations R_1, \ldots, R_m and then evaluate θ in the expanded structure.

Given a *nondeterministic* machine M and a polynomial p :

 $\exists \leq a$ linear order $\exists H, T, S$ that code an accepting computation of M of length p starting with $[A]_{\leq}$.

Is there a logic for P?

The major open question in *Descriptive Complexity* (first asked by Chandra and Harel in 1982) is whether there is a logic $\mathcal L$ such that for any class of finite structures C , C is definable by a sentence of $\mathcal L$ if, and only if, $\mathcal C$ is decidable by a deterministic machine running in polynomial time.

Formally, we require $\mathcal L$ to be a *recursively enumerable* set of sentences, with a computable map taking each sentence to a Turing machine M and a polynomial time bound p such that (M, p) accepts a *class of structures*. (Gurevich 1988)

Inductive Definitions

Let $\varphi(R, x_1, \ldots, x_k)$ be a first-order formula in the vocabulary $\sigma \cup \{R\}$ Associate an operator Φ on a given σ -structure \mathbb{A} :

 $\Phi(R^{\mathbb{A}}) = {\mathbf{a} | (\mathbb{A}, R^{\mathbb{A}}, \mathbf{a}) \models \varphi(R, \mathbf{x})}$

We define the *non-decreasing* sequence of relations on \mathbb{A} :

$$
\Phi^0 = \emptyset
$$

$$
\Phi^{m+1} = \Phi^m \cup \Phi(\Phi^m)
$$

The *inflationary fixed point* of Φ is the limit of this sequence. On a structure with n elements, the limit is reached after at most $n^{\bm{k}}$ stages.

The logic FP is formed by closing first-order logic under the rule: If φ is a formula of vocabulary $\sigma \cup \{R\}$ then $\overline{\text{lfp}_{R,x}\varphi}(t)$ is a formula of vocabulary σ .

The formula is read as: the tuple t is in the inflationary fixed point of the operator defined by φ

LFP is the similar logic obtained using *least fixed points* of *monotone* operators defined by *positive* formulas. LFP and FP have the same expressive power (Gurevich-Shelah 1986; Kreutzer 2004).

Transitive Closure

The formula

 $[\mathbf{ifp}_{T,xy}(x=y \vee \exists z (E(x,z) \wedge T(z,y)))](u,v)$

defines the *transitive closure* of the relation E

The expressive power of FP properly extends that of first-order logic.

Still, every property definable in FP is decidable in *polynomial time*. On a structure with n elements, the fixed-point of an induction of arity k is reached in at most n^k steps.

Immerman-Vardi Theorem

Theorem

On structures which come equipped with a linear order FP expresses exactly the properties that are in P.

(Immerman; Vardi 1982)

Recall from Fagin's theorem:

∃ ≤ a linear order $\exists H, T, S$ that code an accepting computation of M of length p starting with $[A]_{\leq}$.

FP vs. Ptime

The order cannot be built up inductively.

It is an open question whether a *canonical* string representation of a structure can be constructed in polynomial-time.

If it can, there is a logic for P . If not, then $P \neq NP$.

All P classes of structures can be expressed by a sentence of FP with \lt , which is invariant under the choice of order. The set of all such sentences is not re .

FP by itself is too weak to express all properties in P. Evenness is not definable in FP.

Finite Variable Logic

We write L^k for the first order formulas using only the variables x_1, \ldots, x_k .

$$
(\mathbb{A},\mathbf{a})\equiv^{L^{k}}(\mathbb{B},\mathbf{b})
$$

denotes that there is no formula φ of L^k such that $\mathbb{A}\models \varphi[\mathtt{a}]$ and $\mathbb{B} \not\models \varphi[\mathbf{b}]$

If $\varphi(R, x)$ has k variables all together, then each of the relations in the sequence:

 $\Phi^0 = \emptyset$; $\Phi^{m+1} = \Phi^m \cup \Phi(\Phi^m)$

is definable in L^{2k} .

Proof by induction, using *substitution* and *renaming* of bound variables.

Examples

Connectivity is axiomatizable in L^k (for $k \geq 3$). Even cardinality is not.

Connectivity in L^4 :

 $\text{path}_{\leq l}(x, y) := \exists z_1 (E(x, z_1) \land \exists z_2 (E(z_1, z_2) \land \exists z_1 (E(z_2, z_1) \land \cdots E(z_i, y))))$

disconnect_l := $\forall x, y(\text{path}_{\leq l+1}(x, y) \Rightarrow \text{path}_{\leq l}(x, y)) \land \exists x, y \neg \text{path}_{\leq l}(x, y)$

Connectivity is then axiomatized by the set

 $\{\neg \text{disconnect}_{l} \mid l \in \mathbb{N}\}\$

Pebble Game

The k-pebble game is played on two structures $\mathbb A$ and $\mathbb B$, by two players—Spoiler and Duplicator—using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}.$

Spoiler moves by picking a pebble and placing it on an element $(a_i$ on an element of $\mathbb A$ or b_i on an element of $\mathbb B$).

Duplicator responds by picking the matching pebble and placing it on an element of the other structure

Spoiler wins at any stage if the partial map from $\mathbb A$ to $\mathbb B$ definedby the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A and B agree on all sentences of L^k of quantifier rank at most $q.$

(Barwise)

 $\mathbb{A}\equiv^{L^{k}}\mathbb{B}$ if, for every q , D uplicator wins the q round, k pebble game on A and $\mathbb B$. Equivalently (on finite structures) Duplicator has a strategy to play forever.

Evenness

To show that *Evenness* is not definable in FP, it suffices to show that: for every k, there are structures \mathbb{A}_k and \mathbb{B}_k such that \mathbb{A}_k has an even number of elements. \mathbb{B}_{k} has an odd number of elements and

 $\mathbb{A} \equiv^{L^k} \mathbb{B}.$

It is easily seen that *Duplicator* has a strategy to play forever when one structure is a set containing k elements (and no other relations) and the other structure has $k + 1$ elements.

Matching

Take $K_{k,k}$ —the complete bipartite graph on two sets of k vertices. and $K_{k,k+1}$ —the complete bipartite graph on two sets, one of k vertices, the other of $k + 1$.

These two graphs are \equiv^{L^k} equivalent, yet one has a perfect matching, and the other does not.

Inexpressibility in FP

The following are not definable in FP:

- Evenness:
- Perfect Matching;
- Hamiltonicity.

The examples showing these inexpressibility results all involve some form of counting.

Fixed-point Logic with Counting

Immerman proposed FPC—the extension of FP with a mechanism for counting

Two sorts of variables:

- x_1, x_2, \ldots range over $|A|$ —the domain of the structure;
- ν_1, ν_2, \ldots which range over *non-negative integers*.

If $\varphi(x)$ is a formula with free variable x, then $\#x\varphi$ is a term denoting the *number* of elements of $\mathbb A$ that satisfy φ .

We have arithmetic operations $(+, \times)$ on *number terms*.

Quantification over number variables is *bounded*: $(\exists \nu < t) \varphi$

Examples

The following formula is true in a graph if, and only if, it has an even number of edges.

$$
\exists \nu_1 \leq \#x(x = x) \exists \nu_2 \leq \nu_1 \times \nu_1 \ (\nu_1 = \#x(x = x)) \wedge \nu_2 = \sum_{\mu < \nu_1} \mu \times (\#x(\#yE(x, y) = \mu)) \exists \nu_3 \leq \nu_2(\nu_3 \times 4 = \nu_2)
$$

where the sum in the second line can be expressed using the fixed-point operator.

$$
\begin{aligned} \mathbf{ifp}_{T,\mu,\tau}[\mu &= 0 \land \tau = \#x(\forall y \neg E(x, y)) \lor \\ \exists \mu' &\leq \mu \exists \tau' \leq \tau(\mu = \mu' + 1 \land T(\mu', \tau') \land \\ \tau &= \tau' + \mu \times \#x(\#yE(x, y) = \mu))](\nu_1, \nu_2). \end{aligned}
$$

Relational Machines

Input: A relational database Store: relational and numerical registers

Operations: join, projection, complementation, counting

Properites expressible in FPC are exactly those decidable by such a machine in polynomial time.

Dawar and Wilsenach August 2021

Expressive Power of FPC

Most "obviously" polynomial-time algorithms can be expressed in FPC.

This includes P-complete problems such as CVP—the Circuit Value Problem Input: a circuit, i.e. a labelled DAG with source labels from $\{0, 1\}$, internal node labels from $\{\vee, \wedge, \neg\}$. Decide: what is the value at the output gate.

CVP is expressible in FPC.

It is expressible in FPC also for circuits that may include *threshold or* counting gates.

Expressive Power of FPC

Many non-trivial polynomial-time algorithms can be expressed in FPC: FPC captures all of P over any *proper minor-closed class of graphs* (Grohe 2010)

But some cannot be expressed:

- There are polynomial-time decidable properties of graphs that are not definable in FPC. (Cai, Fürer, Immerman, 1992)
- *XOR-Sat*, or more generally, solvability of a system of linear equations over a finite field cannot be expressed in FPC. (Atserias, Bulatov, D. 2009)

Some NP-complete problems are *provably* not in FPC, including Sat, Hamiltonicity and 3-colouraiblity.

Counting Quantifiers

 C^k is the logic obtained from *first-order logic* by allowing:

- counting quantifiers: $\exists^{i} x \, \varphi$; and
- only the variables x_1, \ldots, x_k .

Every formula of C^k is equivalent to a formula of first-order logic, albeit one with more variables.

For every sentence φ of FPC, there is a k such that if $\mathbb{A}\equiv^{C^{k}}\mathbb{B}$, then

 $\mathbb{A} \models \varphi$ if, and only if, $\mathbb{B} \models \varphi$.

Weisfeiler-Leman Equivalences

 $G\equiv^{C^k} H$ iff G and H cannot be distinguished by a sentence of first-order logic with *counting quantifiers* using only k variables.

 $G \equiv^{C^{k+1}} H$ iff G and H are not distinguished by the coarsest partition of the k-tuples of G into classes P_1, \ldots, P_t satisfying:

two tuples **u** and **v** in the same class P_i cannot be distinguished by counting the number of substitutions we can make in them to get a tuple in class P_i .

Weisfeiler-Leman Equivalences

The k -dimensional Weisfeiler-Leman equivalence relation is an overapproximation of the isomorphism relation.

If G, H are *n*-vertex graphs and $k < n$, we have:

 $G \cong H \quad \Leftrightarrow \quad G \equiv^n H \quad \Rightarrow \quad G \equiv^{k+1} H \quad \Rightarrow \quad G \equiv^k H.$

 $G \equiv^k H$ is decidable in time $n^{O(k)}$.

It has many equivalent characterisations arising from

Counting Game

Immerman and Lander (1990) defined a *pebble game* for C^k . This is again played by *Spoiler* and *Duplicator* using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}.$

At each move, Spoiler picks i and a set of vertices of one structure (say $X \subseteq B$)

Duplicator responds with a set of vertices of the other structure (say $Y \subseteq A$) of the same size.

Spoiler then places a_i on an element of Y and Duplicator must place b_i on an element of X.

Spoiler wins at any stage if the partial map from $\mathbb A$ to $\mathbb B$ defined by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then $\mathbb A$ and $\mathbb B$ agree on all sentences of C^k of quantifier rank at most p .

Bijection Games

 \equiv^{C^k} is also characterised by a k -pebble *bijection game*. $\qquad \quad$ (Hella 96). The game is played on structures A and B with pebbles a_1, \ldots, a_k on A and b_1, \ldots, b_k on \mathbb{B} .

- Spoiler chooses a pair of pebbles a_i and b_i ;
- Duplicator chooses a bijection $h: A \rightarrow B$ such that for pebbles a_i and $b_i (i \neq i)$, $h(a_i) = b_i$;
- Spoiler chooses $a \in A$ and places a_i on a and b_i on $h(a)$.

Duplicator loses if the partial map $a_i \mapsto b_i$ is not a partial isomorphism. Duplicator has a strategy to play forever if, and only if, $\mathbb{A}\equiv^{C^k}\mathbb{B}.$

Equivalence of Games

It is easy to see that a winning strategy for *Duplicator* in the bijection game yields a winning strategy in the counting game:

Respond to a set $X \subseteq A$ (or $Y \subseteq B$) with $h(X)$ $(h^{-1}(Y))$, respectively).

For the other direction, consider the partition induced by the equivalence relation

 $\{(a, a') | (\mathbb{A}, \mathbf{a}[a/a_i]) \equiv^{C^k} (\mathbb{A}, \mathbf{a}[a'/a_i]) \}$

and for each of the parts X, take the response Y of Duplicator to a move where $Spoiler$ would choose X . Stitch these together to give the bijection h .

Cai-Fürer-Immerman Graphs

Cai-Fürer-Immerman show that there is a polynomial-time graph property that is not in FPC by constructing a sequence of pairs of graphs G_k , $H_k(k \in \omega)$ such that:

- $G_k \equiv^{C^k} H_k$ for all k .
- There is a polynomial time decidable class of graphs that includes all G_k and excludes all H_k .

In particular, the first point shows that \equiv^{C^k} (for any fixed k) does not capture isomorphism everywhere

Constructing G_k and H_k

Given any graph G, we can define a graph X_G by replacing every edge with a pair of edges, and every vertex with a gadget.

The picture shows the gadget for a vertex v that is adjacent in G to vertices w_1, w_2 and w_3 . The vertex v^S is adjacent to $a_{vw_i} (i \in S)$ and $b_{vw_i} (i \not \in S)$ and there is one vertex for all even size S. The graph X_G is like X_G except that at one vertex v , we include v^S for *odd size* S .

Properties

If G is connected and has treewidth at least k , then:

- 1. $X_G \not\cong \tilde{X}_G$; and
- 2. $X_G \equiv^{C^k} \tilde{X}_G$.

(1) allows us to construct a polynomial time property separating X_G and X_G .

(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the existence of balanced separators in G . The characterisation in terms of treewidth is from (D., Richerby 07).