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Descriptive Complexity

Descriptive Complexity provides an alternative perspective on
Computational Complexity.

Computational Complexity

• Measure use of resources (space, time, etc.) on a machine model of
computation;

• Complexity of a language—i.e. a set of strings.

Descriptive Complexity

• Complexity of a class of structures—e.g. a collection of graphs.

• Measure the complexity of describing the collection in a formal logic,
using resources such as variables, quantifiers, higher-order operators,
etc.

There is a fascinating interplay between the views.
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Fagin’s Theorem

Theorem (Fagin)

A class C of finite structures is definable by a sentence of existential
second-order logic if, and only if, it is decidable by a nondeterminisitic
machine running in polynomial time.

ESO = NP
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Fagin’s Theorem

If ϕ is ∃R1 · · · ∃Rmθ for a first-order θ.

To decide A |= ϕ, guess an interpretation for the relations R1, . . . , Rm
and then evaluate θ in the expanded structure.

Given a nondeterministic machine M and a polynomial p:

∃ ≤ a linear order
∃H,T, S that code an accepting computation of M of length p
starting with [A]≤.
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Is there a logic for P?

The major open question in Descriptive Complexity (first asked by
Chandra and Harel in 1982) is whether there is a logic L such that

for any class of finite structures C, C is definable by a sentence
of L if, and only if, C is decidable by a deterministic machine
running in polynomial time.

Formally, we require L to be a recursively enumerable set of sentences,
with a computable map taking each sentence to a Turing machine M and
a polynomial time bound p such that (M,p) accepts a class of structures.

(Gurevich 1988)
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Inductive Definitions

Let ϕ(R, x1, . . . , xk) be a first-order formula in the vocabulary σ ∪ {R}
Associate an operator Φ on a given σ-structure A:

Φ(RA) = {a | (A, RA,a) |= ϕ(R,x)}

We define the non-decreasing sequence of relations on A:

Φ0 = ∅
Φm+1 = Φm ∪ Φ(Φm)

The inflationary fixed point of Φ is the limit of this sequence.
On a structure with n elements, the limit is reached after at most nk

stages.

Dawar and Wilsenach August 2021



FP

The logic FP is formed by closing first-order logic under the rule:

If ϕ is a formula of vocabulary σ ∪ {R} then [ifpR,xϕ](t) is a
formula of vocabulary σ.

The formula is read as:
the tuple t is in the inflationary fixed point of the operator defined
by ϕ

LFP is the similar logic obtained using least fixed points of monotone
operators defined by positive formulas.
LFP and FP have the same expressive power (Gurevich-Shelah 1986;

Kreutzer 2004).

Dawar and Wilsenach August 2021



Transitive Closure

The formula

[ifpT,xy(x = y ∨ ∃z(E(x, z) ∧ T (z, y)))](u, v)

defines the transitive closure of the relation E

The expressive power of FP properly extends that of first-order logic.

Still, every property definable in FP is decidable in polynomial time.

On a structure with n elements, the fixed-point of an induction
of arity k is reached in at most nk steps.
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Immerman-Vardi Theorem

Theorem
On structures which come equipped with a linear order FP expresses
exactly the properties that are in P.

(Immerman; Vardi 1982)

Recall from Fagin’s theorem:

∃ ≤ a linear order
∃H,T, S that code an accepting computation of M of length p
starting with [A]≤.
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FP vs. Ptime

The order cannot be built up inductively.
It is an open question whether a canonical string representation of a
structure can be constructed in polynomial-time.

If it can, there is a logic for P.
If not, then P 6= NP.

All P classes of structures can be expressed by a sentence of FP with <,
which is invariant under the choice of order. The set of all such sentences
is not r.e.

FP by itself is too weak to express all properties in P.
Evenness is not definable in FP.
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Finite Variable Logic

We write Lk for the first order formulas using only the variables
x1, . . . , xk.

(A,a) ≡L
k

(B,b)

denotes that there is no formula ϕ of Lk such that A |= ϕ[a] and
B 6|= ϕ[b]

If ϕ(R,x) has k variables all together, then each of the relations in the
sequence:

Φ0 = ∅; Φm+1 = Φm ∪ Φ(Φm)

is definable in L2k.

Proof by induction, using substitution and renaming of bound variables.
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Examples

Connectivity is axiomatizable in Lk (for k ≥ 3).

Even cardinality is not.

Connectivity in L4:

path≤l(x, y) := ∃z1(E(x, z1)∧∃z2(E(z1, z2)∧∃z1(E(z2, z1)∧· · ·E(zi, y))))

disconnectl := ∀x, y(path≤l+1(x, y)⇒ path≤l(x, y))∧∃x, y¬path≤l(x, y)

Connectivity is then axiomatized by the set

{¬disconnectl | l ∈ N}
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Pebble Game

The k-pebble game is played on two structures A and B, by two
players—Spoiler and Duplicator—using k pairs of pebbles
{(a1, b1), . . . , (ak, bk)}.

Spoiler moves by picking a pebble and placing it on an element
(ai on an element of A or bi on an element of B).

Duplicator responds by picking the matching pebble and placing
it on an element of the other structure

Spoiler wins at any stage if the partial map from A to B definedby
the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A and B
agree on all sentences of Lk of quantifier rank at most q.

(Barwise)

A ≡Lk B if, for every q, Duplicator wins the q round, k pebble game on
A and B. Equivalently (on finite structures) Duplicator has a strategy to
play forever.
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Evenness

To show that Evenness is not definable in FP, it suffices to show that:
for every k, there are structures Ak and Bk such that Ak has an
even number of elements, Bk has an odd number of elements
and

A ≡L
k

B.

It is easily seen that Duplicator has a strategy to play forever when one
structure is a set containing k elements (and no other relations) and the
other structure has k + 1 elements.
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Matching

Take Kk,k—the complete bipartite graph on two sets of k vertices.
and Kk,k+1—the complete bipartite graph on two sets, one of k vertices,
the other of k + 1.

These two graphs are ≡Lk

equivalent, yet one has a perfect matching,
and the other does not.
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Inexpressibility in FP

The following are not definable in FP:

• Evenness;

• Perfect Matching;

• Hamiltonicity.

The examples showing these inexpressibility results all involve some form
of counting.
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Fixed-point Logic with Counting

Immerman proposed FPC—the extension of FP with a mechanism for
counting

Two sorts of variables:

• x1, x2, . . . range over |A|—the domain of the structure;

• ν1, ν2, . . . which range over non-negative integers.

If ϕ(x) is a formula with free variable x, then #xϕ is a term denoting
the number of elements of A that satisfy ϕ.

We have arithmetic operations (+,×) on number terms.

Quantification over number variables is bounded: (∃ν < t)ϕ
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Examples

The following formula is true in a graph if, and only if, it has an even
number of edges.

∃ν1 ≤ #x(x = x) ∃ν2 ≤ ν1 × ν1 (ν1 = #x(x = x))∧
ν2 =

∑
µ<ν1

µ× (#x(#yE(x, y) = µ))

∃ν3 ≤ ν2(ν3 × 4 = ν2)

where the sum in the second line can be expressed using the fixed-point
operator.

ifpT,µ,τ [µ = 0 ∧ τ = #x(∀y¬E(x, y))∨
∃µ′ ≤ µ∃τ ′ ≤ τ(µ = µ′ + 1 ∧ T (µ′, τ ′)∧
τ = τ ′ + µ×#x(#yE(x, y) = µ))](ν1, ν2).
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Relational Machines

Input: A relational database

Store: relational and numerical
registers

Operations: join, projection, com-
plementation, counting

Properites expressible in FPC are exactly those decidable by such a
machine in polynomial time.
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Expressive Power of FPC

Most “obviously” polynomial-time algorithms can be expressed in FPC.

This includes P-complete problems such as

CVP—the Circuit Value Problem
Input: a circuit, i.e. a labelled DAG with source labels from
{0, 1}, internal node labels from {∨,∧,¬}.
Decide: what is the value at the output gate.

CVP is expressible in FPC.

It is expressible in FPC also for circuits that may include threshold or
counting gates.
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Expressive Power of FPC

Many non-trivial polynomial-time algorithms can be expressed in FPC:

FPC captures all of P over any proper minor-closed class of graphs
(Grohe 2010)

But some cannot be expressed:

• There are polynomial-time decidable properties of graphs that are
not definable in FPC. (Cai, Fürer, Immerman, 1992)

• XOR-Sat, or more generally, solvability of a system of linear
equations over a finite field cannot be expressed in FPC. (Atserias,

Bulatov, D. 2009)

Some NP-complete problems are provably not in FPC, including Sat,
Hamiltonicity and 3-colouraiblity.
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Counting Quantifiers

Ck is the logic obtained from first-order logic by allowing:

• counting quantifiers: ∃ixϕ; and

• only the variables x1, . . . .xk.

Every formula of Ck is equivalent to a formula of first-order logic, albeit
one with more variables.

For every sentence ϕ of FPC, there is a k such that if A ≡Ck B, then

A |= ϕ if, and only if, B |= ϕ.
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Weisfeiler-Leman Equivalences

G ≡Ck

H iff G and H cannot be distinguished by a sentence of
first-order logic with counting quantifiers using only k variables.

G ≡Ck+1

H iff G and H are not distinguished by the coarsest partition of
the k-tuples of G into classes P1, . . . , Pt satisfying:

two tuples u and v in the same class Pi cannot be distinguished
by counting the number of substitutions we can make in them to
get a tuple in class Pj .
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Weisfeiler-Leman Equivalences

The k-dimensional Weisfeiler-Leman equivalence relation is an
overapproximation of the isomorphism relation.

If G,H are n-vertex graphs and k < n, we have:

G ∼= H ⇔ G ≡n H ⇒ G ≡k+1 H ⇒ G ≡k H.

G ≡k H is decidable in time nO(k).

It has many equivalent characterisations arising from

• combinatorics (Babai)

• logic (Immerman-Lander)

• algebra (Weisfeiler; Holm)

• linear optimization (Atserias-Maneva; Malkin)

Dawar and Wilsenach August 2021



Counting Game

Immerman and Lander (1990) defined a pebble game for Ck.
This is again played by Spoiler and Duplicator using k pairs of pebbles
{(a1, b1), . . . , (ak, bk)}.

At each move, Spoiler picks i and a set of vertices of one structure
(say X ⊆ B)

Duplicator responds with a set of vertices of the other structure
(say Y ⊆ A) of the same size.

Spoiler then places ai on an element of Y and Duplicator must
place bi on an element of X.

Spoiler wins at any stage if the partial map from A to B defined
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then A and B
agree on all sentences of Ck of quantifier rank at most p.

Dawar and Wilsenach August 2021



Bijection Games

≡Ck

is also characterised by a k-pebble bijection game. (Hella 96).
The game is played on structures A and B with pebbles a1, . . . , ak on A
and b1, . . . , bk on B.

• Spoiler chooses a pair of pebbles ai and bi;

• Duplicator chooses a bijection h : A→ B such that for pebbles aj
and bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.

Duplicator has a strategy to play forever if, and only if, A ≡Ck B.
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Equivalence of Games

It is easy to see that a winning strategy for Duplicator in the bijection
game yields a winning strategy in the counting game:

Respond to a set X ⊆ A (or Y ⊆ B) with h(X) (h−1(Y ),
respectively).

For the other direction, consider the partition induced by the equivalence
relation

{(a, a′) | (A,a[a/ai]) ≡C
k

(A,a[a′/ai])}

and for each of the parts X, take the response Y of Duplicator to a
move where Spoiler would choose X.
Stitch these together to give the bijection h.
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Cai-Fürer-Immerman Graphs

Cai-Fürer-Immerman show that there is a polynomial-time graph property
that is not in FPC by constructing a sequence of pairs of graphs
Gk, Hk(k ∈ ω) such that:

• Gk ≡C
k

Hk for all k.

• There is a polynomial time decidable class of graphs that includes all
Gk and excludes all Hk.

In particular, the first point shows that ≡Ck

(for any fixed k) does not
capture isomorphism everywhere

Dawar and Wilsenach August 2021



Constructing Gk and Hk

Given any graph G, we can define a graph XG by replacing every edge
with a pair of edges, and every vertex with a gadget.

The picture shows the gadget for
a vertex v that is adjacent in G to
vertices w1, w2 and w3.
The vertex vS is adjacent to
avwi(i ∈ S) and bvwi(i 6∈ S) and
there is one vertex for all even size
S.
The graph X̃G is like XG except
that at one vertex v, we include
vS for odd size S.

avw1
bvw1

avw2

bvw2
avw3

bvw3

v
∅ v

{1,2} v
{1,3}

v
{2,3}
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Properties

If G is connected and has treewidth at least k, then:

1. XG 6∼= X̃G; and

2. XG ≡C
k

X̃G.

(1) allows us to construct a polynomial time property separating XG and
X̃G.
(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the exis-
tence of balanced separators in G. The characterisation in terms
of treewidth is from (D., Richerby 07).
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