
Symmetric Computation: Lecture 1

Anuj Dawar and Gregory Wilsenach

Department of Computer Science and Technology, University of Cambridge

ESSLLI, August 2021

The Science of Abstraction

Computer Science is the Mechanization of Abstraction.
(Aho and Ullman)

The first step to solving a problem computationally is to strip away
irrelevant concrete detail and formulate it as an abstract problem.

In the terms of Aho and Ullman, this means constructing an abstract
data model and deciding which aspects of concrete, messy reality are
represented there.

Dawar and Wilsenach August 2021

Example: Matching Taxis to Passengers

Example: Consider the problem of assigning a set of available taxis to a
set of waiting passengers.

The assignment may have to minimize distance travelled by the taxis,
and respond in real-time.

Dawar and Wilsenach August 2021

Example: Matching Kidney Patients to Donors
The English National Health Service runs a kidney matching programme.

Patients needing a kidney transplant often have a relative who is willing
to donate a kidney.
However, there may be tissue incompatibility.

If one is fortunate, a matching donor/recipient pair can be found and a
kidney swap arranged:

Dawar and Wilsenach August 2021

Kidney Matching

The likelihood of finding a match is greatly increased if we look for longer
chains of donor/recipient matches:

Dawar and Wilsenach August 2021

Graph Matching

At the core of both is the same al-
gorithmic problem.

We have a bipartite graph in which
to find a perfect matching.

Thinking about it at this abstract level is what allows us re-use
algorithmic ideas.

Note, this is not just about re-using code but also more fundamental
insights.

Dawar and Wilsenach August 2021

Turing Machines

One of the original abstractions in computer science is the formalization
of the notion of algorithm as a Turing Machine.

A Turing Machine consists of a processor
(with a finite memory) and an infinite
tape.

At any point, the processor can look at
one symbol on the tape, and perform an
action based on a finite table.

The Church-Turing thesis asserts that all models of computation are
equivalent to this one.

So, why would be bother with any others?

Dawar and Wilsenach August 2021

High-level Languages and Abstraction

The reason for a wide variety of computational models (such as high-level
programming languages) is that different programming applications
require different abstractions.

A rich vein of theoretical research explores different abstractions and their
formal semantic properties.

The simplicity of Turing machines is useful in establishing impossibility
results.

Dawar and Wilsenach August 2021

Algorithms and Abstraction

Algorithms are usually described by operations on abstract data such as
graphs.
The complexity of algorithms, and particularly complexity classes are
defined by machine models (e.g. Turing machines) operating on strings
of symbols.

The mismatch is generally considered harmless as data structures can be
encoded as strings.

However, it does break abstraction.

Sometimes even high-level descriptions of algorithms break the level of
abstraction.

Dawar and Wilsenach August 2021

Graph Matching

Given a bipartite graph G = (A ∪B,E),

Start with an empty matching M = ∅.
Choose an a ∈ A that is currently unmatched and find an aug-
menting path P starting at a and ending in an unmatched b ∈ B.
Set M to be M ⊕ P .

The choice of a is arbitrary and generally relies on concrete hidden data.

Abstract data has symmetries that an abstract algorithm should respect.

Dawar and Wilsenach August 2021

The Role of Symmetry

If we expect an algorithm to work at the level of abstraction of graphs,
then it must respect symmetries of the graph.

If two nodes in a graph G are indistinguishable by properties of the
graph, then they should not be distinguished in any way by the algorithm.

This opens up the question of what algorithms have the property of
respecting symmetry?

Dawar and Wilsenach August 2021

Algorithms for Matching

The algorithm for finding a maximum size matching in a bipartite graph,
based on augmenting paths goes back to Ford-Fulkerson.

It was in the context of algorithms for matching that Edmonds 1965 first
defined good algorithms, i.e. ones that run in polynomial time.

The asymptotically fastest algorithm (for general, not just bipartite
graphs) is due to Micali and Vazirani, 1980 and runs in time O(

√
|V ||E|).

Can Matching be solved by an efficient and symmetry respecting
algorithm?

For instance, it can be shown that the Micali-Vazirani algorithm for graph
matching is not symmetry-respecting.

Dawar and Wilsenach August 2021

Symmetry from High-level Description

Algorithms that are automatically generated from high-level descriptions,
will preserve symmetries.

This sentence says that the relation M is a matching in the graph with
edge relation E.

∀x∀y[M(x, y)→ E(x, y)] ∧ ∀x∃!yM(x, y)

An algorithm to search for such an M in a graph, generated from this
description, would most likely be exponential.

Dawar and Wilsenach August 2021

Relational Databases

Cinema = {Movies[3], Location[3], Guide[3]}
Movies Title Director Actor

Magnolia Anderson Moore
Magnolia Anderson Cruise
Spiderman Raimi Maguire
Spiderman Raimi Dunst
...
Rocky Avildsen Stallone
RockyII Stalone Stallone

Guide Title Cinema Time

Rocky Warner 12:00
Spiderman Picturehouse 19:00
...
Spiderman Phoenix 19:00
Magnolia Picturehouse 22:00

Location Cinema Address Tel

Picturehouse Cambridge 504444
Phoenix Oxford 512526
Warner Cambridge 560225

Dawar and Wilsenach August 2021

Relational Algebra

In relational algebra, queries are built up from
Base relations: R
Singleton constant relations: {〈a〉}

using

select: σj=a(q) or σj=k(q)
project: πj1,...,jk(q)
join: q1 ./ q2
union: q1 ∪ q2
difference: q1 − q2

Dawar and Wilsenach August 2021

Relational Machines
Formal Models of algorithms that work on abstract structures have been
well-studied in the context of database query languages.

Input: A relational database

Store: relational and numerical
registers

Operations: join, projection, com-
plementation, counting

Dawar and Wilsenach August 2021

Logic

Query languages for relational databases are often modelled in Logic.

The relational algebra has a natural translation into first-order logic.

First-order predicate logic.

Fix a vocabulary σ of relation symbols (R1, . . . , Rm) and con-
stant symbols c1, . . . , ck and
a collection X of variables.

The formulas are given by

Ri(t) | s = t | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ∃xϕ | ∀xϕ

where x ∈ X; s, t ∈ X ∪ {c1, . . . , ck} and t ∈ (X ∪ {c1, . . . , ck})a—a
the arity of Ri.

Dawar and Wilsenach August 2021

First-Order Logic

For a first-order sentence ϕ, we ask what is the computational complexity
of the problem:

Given: a structure A
Decide: if A |= ϕ

In other words, how complex can the collection of finite models of ϕ be?

In order to talk of the complexity of a class of finite structures, we need
to fix some way of representing finite structures as strings.

Dawar and Wilsenach August 2021

Encoding Structures

We use an alphabet Σ = {0, 1,#}.
For a structure A = (A,R1, . . . , Rm), fix a linear order < on
A = {a1, . . . , an}.
Ri (of arity k) is encoded by a string [Ri]< of 0s and 1s of length nk.

[A]< = 1 · · · 1︸ ︷︷ ︸
n

#[R1]<# · · ·#[Rm]<

The exact string obtained depends on the choice of order.

Dawar and Wilsenach August 2021

Invariance

Note that the decision problem:

Given a string [A]< decide whether A |= ϕ

has a natural invariance property.

It is invariant under the following equivalence relation

Write w1 ∼ w2 to denote that there is some structure A and
orders <1 and <2 on its universe such that

w1 = [A]<1 and w2 = [A]<2

Note: deciding the equivalence relation ∼ is just the same as deciding
structure isomorphism.

Dawar and Wilsenach August 2021

Näıve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If ϕ ≡ ∃xψ then for each a ∈ A check whether

(A, c 7→ a) |= ψ[c/x],

where c is a new constant symbol.

This runs in time O(lnm) and O(m log n) space, where l is the length of
ϕ and m is the nesting depth of quantifiers in ϕ.

Mod(ϕ) = {A | A |= ϕ}

is in logarithmic space and polynomial time.

Dawar and Wilsenach August 2021

Second-Order Logic

There are computationally easy properties that are not definable in
first-order logic.

• There is no sentence ϕ of first-order logic such that A |= ϕ if, and
only if, |A| is even.

• There is no formula ϕ(E, x, y) that defines the transitive closure of
a binary relation E.

Consider second-order logic, extending first-order logic with relational
quantifiers — ∃Xϕ

Dawar and Wilsenach August 2021

Examples

Evennness
This formula is true in a structure if, and only if, the size of the domain
is even.
∃B∃S ∀x∃yB(x, y) ∧ ∀x∀y∀zB(x, y) ∧B(x, z)→ y = z

∀x∀y∀zB(x, z) ∧B(y, z)→ x = y
∀x∀yS(x) ∧B(x, y)→ ¬S(y)
∀x∀y¬S(x) ∧B(x, y)→ S(y)

Dawar and Wilsenach August 2021

Examples

Transitive Closure
The following formula is true of a pair of elements a, b in a structure if,
and only if, there is an E-path from a to b.

∀S
(
S(a) ∧ ∀x∀y[S(x) ∧ E(x, y)→ S(y)]→ S(b)

)
Matching
The following formula is true in a graph (V,E) if, and only if, the graph
contains a perfect matching.

∃M ∀x∀y[M(x, y)→ E(x, y)] ∧ ∀x∃!yM(x, y)

Dawar and Wilsenach August 2021

Examples

3-Colourability
The following formula is true in a graph (V,E) if, and only if, it is
3-colourable.
∃R∃B∃G ∀x(Rx ∨Bx ∨Gx)∧

∀x(¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧
∀x∀y(Exy → (¬(Rx ∧Ry)∧

¬(Bx ∧By)∧
¬(Gx ∧Gy)))

Dawar and Wilsenach August 2021

Fagin’s Theorem

Theorem (Fagin)

A class C of finite structures is definable by a sentence of existential
second-order logic if, and only if, it is decidable by a nondeterminisitic
machine running in polynomial time.

ESO = NP

Dawar and Wilsenach August 2021

Is there a logic for P?

The major open question in Descriptive Complexity (first asked by
Chandra and Harel in 1982) is whether there is a logic L such that

for any class of finite structures C, C is definable by a sentence
of L if, and only if, C is decidable by a deterministic machine
running in polynomial time.

Formally, we require L to be a recursively enumerable set of sentences,
with a computable map taking each sentence to a Turing machine M and
a polynomial time bound p such that (M,p) accepts a class of structures.

(Gurevich 1988)

Dawar and Wilsenach August 2021

Circuits

A language L ⊆ {0, 1}∗ can be described by a family of Boolean
functions:

(fn)n∈ω : {0, 1}n → {0, 1}.

Each fn may be computed by a
circuit Cn made up of

• Gates labeled by Boolean
operators: ∧,∨,¬,

• Boolean inputs:
x1, . . . , xn, and

• A distinguished gate
determining the output.

∧,∨,¬,Maj

X︷ ︸︸ ︷

Dawar and Wilsenach August 2021

Circuit Complexity

Circuits are just the unfoldings of the behaviour of an algorithm on inputs
of a fixed size n into simple actions such as Boolean AND, OR and NOT
operations.

If there is a polynomial p(n) bounding the size of Cn, i.e. the number of
gates in Cn, the language L is in the class P/poly.

If, in addition, the function n 7→ Cn is computable in polynomial time, L
is in P.

Note: For these classes it makes no difference whether the circuits only use

{∧,∨,¬} or a richer basis with threshold or majority gates.

Dawar and Wilsenach August 2021

Circuit Lower Bounds

It is conjectured that NP 6⊆ P/poly.

Lower bound results have been obtained by putting further restrictions on
the circuits:

• No constant-depth (unbounded fan-in), polynomial-size family of
circuits decides parity. (Furst, Saxe, Sipser 1983).

• No polynomial-size family of monotone circuits decides clique.
(Razborov 1985).

• No constant-depth, O(n
k
4)-size family of circuits decides k-clique.

(Rossman 2008).

No known result separates NP from constant-depth, polynomial-size
families of circuits with majority gates.

Dawar and Wilsenach August 2021

Circuits for Graph Properties

We want to study families of circuits that decide properties of graphs (or
other relational structures—for simplicity of presentation we restrict
ourselves to graphs).

We have a family of Boolean circuits (Cn)n∈ω where there are n2 inputs
labelled (i, j) : i, j ∈ [n], corresponding to the potential edges.
Each input takes value 0 or 1;

Graph properties in P are given by such families where:

• the size of Cn is bounded by a polynomial p(n); and

• the family is uniform, so the function n 7→ Cn is in P (or
DLogTime).

Dawar and Wilsenach August 2021

Invariant Circuits

Cn is invariant if, for every input graph, the output is unchanged under a
permutation of the inputs induced by a permutation of [n].

That is, given any input G : [n]2 → {0, 1}, and a permutation π ∈ Sn,

Cn accepts G if, and only if, Cn accepts the input πG given

(πG)(i, j) = G(π(i), π(j)).

Note: this is not the same as requiring that the result is invariant under
all permutations of the input. That would only allow us to define
functions of the number of 1s in the input. The functions we define
include all isomorphism-invariant graph properties such as connectivity,
perfect matching, Hamiltonicity, 3-colourability.

Dawar and Wilsenach August 2021

Symmetric Circuits

Say Cn is symmetric if any permutation of [n] applied to its inputs can
be extended to an automorphism of Cn.

i.e., for each π ∈ Sn, there is an automorphism of Cn that takes
input (i, j) to (πi, πj).

Any symmetric circuit is invariant, but not conversely.

Consider the natural circuit for deciding whether the number of
edges in an n-vertex graph is even.

Any invariant circuit can be converted to a symmetric circuit, but with
potentially exponential blow-up.

Dawar and Wilsenach August 2021

Logic and Circuits

Any formula of ϕ first-order logic translates into a uniform family of
circuits Cn

For each subformula ψ(x) and each assignment a of values to
the free variables, we have a gate.
Existential quantifiers translate to big disjunctions, etc.

The circuit Cn is:

• of constant depth (given by the depth of ϕ);

• of size at mose c · nk where c is the number of subformulas of ϕ and
k is the maximum number of free variables in any subformula of ϕ.

• symmetric by the action of π ∈ Sn that takes ψ[a] to ψ[π(a)].

Dawar and Wilsenach August 2021

Linear Programs for Hard problems

In the 1980s there was a great deal of excitement at the discovery that
linear programming could be done in polynomial time.

This raised the possibility that linear programming techniques could be
used to efficiently solve hard problems.

Many proposals were put forth for encoding hard problems (such as the
Travelling Salesman Problem) (TSP) as linear programs.

(Yannakakis 1991) proved that any encoding of TSP as a linear program,
satisfying natural symmetry conditions, must have exponential size.

Dawar and Wilsenach August 2021

